Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2360-2370.doi: 10.16285/j.rsm.2021.1956

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of behavior of hydrate-bearing sediments during servo depressurization

WANG Xin-bo1, 2, WANG Lu-jun1, 2, 3, ZHU Bin1, 2, 3, WANG Peng1, 2, YUAN Si-min1, 2, CHEN Yun-min1, 2, 3   

  1. 1. Key Laboratory of Soft Soils and Geoenvironmental Engineering of the Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2021-11-18 Revised:2022-04-28 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51988101, 52078458) and Zhejiang Natural Science Foundation (LCD19E090001).

Abstract: Natural gas hydrate in deep sea exists in a certain temperature and pressure condition. The depressurization rate during hydrate dissociation by depressurization has a great impact on the gas production rate and hydrate-bearing sediment deformation characteristics. In order to investigate the influence of depressurization rate on temperature field, pore pressure field, deformation characteristics, and gas production rate of hydrate-bearing sediment, a group of depressurization tests with different depressurization rates was carried out on the apparatus independently developed by Zhejiang University that can perform linear gradient servo depressurization for simulating the hydrate decomposition process. The results show that the temperature decreases first from the perimeter of the shaft where the decomposition region starts, and then gradually spreads to the surrounding sediment at the initial stage of depressurization. Increasing the depressurization rate appropriately can improve the production efficiency of the reservoir, but the higher depressurization rate may cause the hydrate regeneration, which is not conducive to gas production. Optimal gas production efficiency can be obtained by selecting a specific depressurization rate. In the process of hydrate exploitation, the pore shape of the hydrate-bearing sediment can be divided into three types, according to the connection degree between pores and the surrounding area: completely sealed, partially sealed, and open. After hydrate exploitation, the shallow surface soil of reservoir can be divided into three areas based on the deformation characteristics: Zone I is the soil layer around the shaft, showing a funnel-shaped subsidence structure; the soil layer in Zone II is flat with no obvious disturbance; Zone III is the boundary soil layer, where the upward migration of water and gas production is blocked, leading to a mound like uplift zone. These deformation characteristics are related to the migration paths and modes of gas production in hydrate-bearing sediment. Through similarity analysis, the corresponding relationships between the decomposition time and gas production of the model and prototype are given.

Key words: hydrate, depressurizing production, soil deformations, model test, gas production rate

CLC Number: 

  • TU411
[1] LAI Zhi-qiang, BAI Sheng-yuan, CHEN Lin, ZOU Wei-lie, XU Shu-ling, ZHAO Lian-jun, . Experimental study of dewatering characteristics of ring-type tube stockyard sludge storage [J]. Rock and Soil Mechanics, 2025, 46(9): 2805-2815.
[2] HUANG Da-wei, LU Wen-jian, LUO Wen-jun, YU Jue, . An experimental study on the influence of synchronous grouting during shield tunnel construction on vertical displacement and surrounding earth pressure in sandy soil [J]. Rock and Soil Mechanics, 2025, 46(9): 2837-2846.
[3] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[4] WU Jia-yuan, WANG Hua-ning, SONG Fei, HU Tao, JIANG Ming-jing, . A semi-analytical wellbore stability model considering strain-softening behaviors of energy-related sediments and the entire exploitation process [J]. Rock and Soil Mechanics, 2025, 46(7): 2121-2134.
[5] YANG Bai, QIN Chao, ZHANG Yin-hai, WANG Wei, XIAO Shi-guo, . Model tests on bearing characteristics of pile with high rock-socketed ratio above an underlying karst cave [J]. Rock and Soil Mechanics, 2025, 46(6): 1839-1850.
[6] SHI Zhan, ZHANG Tie-jun, LI Mei-xiang, TAO Si-ji, BO Yin, LI Yun-bo, . Model test of horizontal freezing reinforcement in mud tank of slurry balanced shield [J]. Rock and Soil Mechanics, 2025, 46(5): 1534-1544.
[7] CHAI Hong-tao, WEN Song-lin, . Centrifugal model test on characteristics of pile foundation bearing capacity failure envelope curve under combined loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1556-1562.
[8] REN Yi-qing, CHEN Bao-guo, REN Guo-qing, YANG Zhen-zhong, XU Fang. Stress characteristics of high-fill box culvert with soft layers placed on the top and sidewall during construction [J]. Rock and Soil Mechanics, 2025, 46(4): 1153-1162.
[9] PEI Yuan-yuan, LONG Jian-hui, GUO Shi-yi, AN Cheng-ji, WENG Hang-yu, ZHANG Ji-ning, . Model test study on stress-strain characteristics of angled reinforced soil retaining wall under different loads [J]. Rock and Soil Mechanics, 2025, 46(2): 539-550.
[10] WANG Bing, HU Xiao-bo, KONG Nan-nan. Experimental study on vacuum combined with electro-osmosis for reinforcing ultrafine particle dredged soil [J]. Rock and Soil Mechanics, 2025, 46(11): 3523-3533.
[11] LIU Wen-jing, DENG Hui, ZHOU Xin. Dynamic response of high steep rock slope with a double-layer ductile shear zone under earthquake action [J]. Rock and Soil Mechanics, 2025, 46(11): 3534-3548.
[12] CHEN Huai-lin, YANG Tao, RAO Yun-kang, ZHANG Zhe, WU Hong-gang, XIE Jiang-wei, TENG Han-qing. Calculation method of sliding surface stress based on segmented sliding surface stress measurement system [J]. Rock and Soil Mechanics, 2025, 46(11): 3562-3573.
[13] SUN Min-yang, WANG Zhong-jin, XIE Xin-yu, ZHANG Ri-hong, LOU Yang, ZHU Da-yong, . Model test on thermal-mechanical characteristics of energy pile groups in saturated clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 382-390.
[14] LEI Hua-yang, YANG Yang, XU Ying-gang, . Experimental study on stratum disturbance of shield construction under different tunnel depth conditions [J]. Rock and Soil Mechanics, 2024, 45(S1): 1-12.
[15] LIU Zhi-chun, MA Bo, HU Zhi-nan, ZHANG Zhen-bo, DU Kong-ze, . Experimental study on distribution pattern of active earth pressure of foundation pit adjacent to an underground structure [J]. Rock and Soil Mechanics, 2024, 45(S1): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!