Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2431-2442.doi: 10.16285/j.rsm.2021.1965

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Deformation and failure characteristics of Cretaceous sandstone under low temperature and loading

QU Yong-long1, 2, YANG Geng-she2, XI Jia-mi2, HE Hui1, DING Xiao1, ZHANG Meng1   

  1. 1. School of Civil and Architecture Engineering, Xi’an Technological University, Xi’an, Shaanxi 710021, China; 2. School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China
  • Received:2021-11-22 Revised:2022-05-06 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51774231), the Natural Science Basic Research Program of Shaanxi (2022JQ-443) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (22JK0416).

Abstract:

To study the effect of both low temperature and loading on the deformation and failure characteristics of water-rich Cretaceous sandstone in Longdong area, the uniaxial and triaxial compression tests and microstructure test on different sandstones (medium and coarse-grained sandstones) under different temperatures (−30, −20, −10, −5 and 25℃) and confining pressures (0, 4, 6 and 8 MPa) were conducted using MTS-815 servo rock mechanics testing machine and scanning electron microscope (SEM). Then the freezing-loading deformation, the failure characteristics and the internal mechanism of saturated Cretaceous sandstone were systematically analyzed. The results show that the pre-peak pore compaction deformation of sandstone samples is significant, and that of medium-grained sandstone is more notable. The decrease in test temperature and the increase in confining pressure can weaken the compaction deformation of samples and increase the rigidity and strength. And the post-peak deformation of samples is accompanied by a significant increase in volume. As the test temperature increases, the elastic modulus E, shear modulus G, and volume modulus Kv of the samples show a nonlinear attenuation trend of first fast and then slow, and these parameters of the medium-grained sandstone are always lower than those of coarse-grained sandstone under the same conditions. But the change laws of Poisson’s ratio m and Lame constant l are opposite. In addition, the relationships between these deformation parameters and test temperature can be well characterized by a unified exponential model. Under the negative temperature condition, the frost heave failure of the medium-grained sandstone is more serious than that of coarse-grained one, mainly in the form of transverse cracking and point-like bulge failure. Moreover, the loading failure mode of frozen sandstone samples is significantly affected by the factors such as lithology, temperature and confining pressure. The internal mechanism of the difference in deformation and failure of the two types of frozen sandstones is determined by their macro- and micro-structure characteristics such as grains and pores. The results obtained in this study are helpful for the development of the soft rock mechanics and the frozen shaft design of the coal mines in western China.

Key words: Cretaceous sandstone, frozen action, deformation parameter, failure characteristics, microstructure

CLC Number: 

  • TU452
[1] ZHI Bin, WEI Yuan-jun, WANG Pan, ZHANG Qian, LIU Cun-li, REN Hui-ming, . Correlation mechanism between macroscopic strength and microstructure of undisturbed loess containing Na2SO4 salt under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2025, 46(S1): 106-120.
[2] ZHANG Xing-wen, CAO Jing, LEI Shu-yu, LI Yu-hong, CHENG Yun, ZHANG Ning-rui. Effect of fulvic acid environment on the structure and permeability of cement-soil containing humic acid [J]. Rock and Soil Mechanics, 2025, 46(S1): 249-261.
[3] ZHAO Fei, SHI Zhen-ming, YU Song-bo, ZHOU Yuan-yuan, LI Bo, CHEN Jian-feng, ZHANG Qing-zhao, ZHENG Hong-chao. Research progress on dynamic failure and reinforcement of stratified rock slopes [J]. Rock and Soil Mechanics, 2025, 46(11): 3585-3614.
[4] JIANG jian-qing, LUO Min-hua, HU Shi-hong, LIU Zhi-hao, . True triaxial test study on the influence of intermittent joint occurrence on sandstone failure characteristics [J]. Rock and Soil Mechanics, 2025, 46(10): 3077-3092.
[5] HE Yuan-yuan, PENG Qi-lan, WANG Li, WANG Shi-mei, NIE Lei, XU Yan, LYU Yan, CHEN Yong, ZHANG Xian-wei. Investigating pore characteristics and permeability of seasonally frozen turfy soil using multiple micro-test methods [J]. Rock and Soil Mechanics, 2025, 46(1): 110-122.
[6] CHENG Xin, JIANG Wen-hao, HUANG Xiao, LI Shuang, WANG Ying-fu, LI Jiang-shan, . Engineering properties and microstructural evolution of self-hardening vertical barrier materials under the influence of Cr(VI) contaminated solution [J]. Rock and Soil Mechanics, 2024, 45(S1): 225-238.
[7] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Experimental study of direct shear failure characteristics of sandstone joints based on characteristic parameters of acoustic emission [J]. Rock and Soil Mechanics, 2024, 45(S1): 167-177.
[8] WANG Li-yan, JIANG Fei, ZHUANG Hai-yang, WANG Bing-hui, ZHANG Lei, LI Ming, . Dynamic characteristics and microscopic analysis of rubber-steel slag filler considering the influence of hydration period [J]. Rock and Soil Mechanics, 2024, 45(S1): 53-62.
[9] ZHANG Ke, GUAN Shi-hao, QI Fei-fei, XU Yi, JIN Ke-sheng, . Macromechanical properties and microstructure of sandstone under scouring effect [J]. Rock and Soil Mechanics, 2024, 45(7): 1929-1938.
[10] CHEN Kang, LIU Xian-feng, YUAN Sheng-yang, Ma Jie, CHEN Yi-han, JIANG Guan-lu, . Effect of water content on stiffness degradation and microstructure of red mudstone fill material [J]. Rock and Soil Mechanics, 2024, 45(7): 1976-1986.
[11] FAN Pei-pei, ZHANG Ling-kai, DING Xu-sheng, . Deterioration law of shear and compression characteristics of collapsible loess under dry-wet and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2024, 45(7): 2050-2060.
[12] PAN Wang-sheng, ZHAO Tian-yin, LI Xin, . Priority connectivity model of loess microstructure and its significance for preferential flow [J]. Rock and Soil Mechanics, 2024, 45(6): 1709-1719.
[13] RUI Rui, TIAN Zi-jin, YANG Hai-qing, HUANG Teng, MENG Qing-hui, WANG Jin-yuan, . Static characteristics test of marine soft soil under the influence of temperature effect [J]. Rock and Soil Mechanics, 2024, 45(4): 1112-1120.
[14] MIN Fan-lu, SHEN Zheng, LI Yan-cheng, YUAN Da-jun, CHEN Jian, LI Kai, . Solidification and carbonization experimental study on magnesium oxide in shield waste soil and its carbonization mechanism [J]. Rock and Soil Mechanics, 2024, 45(2): 364-374.
[15] CHEN Kang, LIU Xian-feng, JIANG Guan-lu, YUAN Sheng-yang, MA Jie, CHEN Yi-han, . Effect of water content on dynamic properties of red mudstone fill material [J]. Rock and Soil Mechanics, 2024, 45(12): 3705-3716.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!