Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2493-2503.doi: 10.16285/j.rsm.2022.0407

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of fracture dynamic evolution process of grouting specimen under uniaxial compression based on CT scanning

ZHU Chang-xing, SUN Jia-xin, WANG Yan-wei   

  1. School of Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • Received:2022-03-31 Revised:2022-05-27 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51874119), the Department of Education Project of Henan Province (2011A440003) and the Doctorate Fund of Henan Polytechnic University (B2009-96).

Abstract:

To study the fracture dynamic evolution process of grouting specimens under loading conditions, the graded gravel grouting specimen was periodically scanned during the uniaxial compression damage process using a CT scanning system. Based on the image reconstruction technique, the spatial visualization of the fracture structure inside the test grouting specimen block is achieved, and the structural characteristic parameters are characterized quantitatively such as the number and volume of fractures. The gray value and fractal dimension of the CT slices are calculated using Python programming to analyze the mesoscale damage extent at different loading stages of the grouting specimen. It is shown that the specimen’s internal fracture volume shows a trend of slow rise, slow fall, slow rise, and rapid rise. The fracture number shows a trend of increasing firstly and then decreasing during the whole compression stage. When the fracture expansion paths encounter gravel, most of the fractures expand around the gravel location and few fractures expand through the gravel. In addition, the fracture bifurcation expansion mostly appears at the interface between the cement matrix and gravel. The specimen damage process could be divided into four stages in terms of the fracture evolution process inside the specimen: initial defect expansion stage, internal crack compacting stage, fracture expansion stage, and fracture penetration stage. For the slice at the same loading stage of the test specimen, it is found that the value of the damage variable and fractal dimension shows a certain positive correlation, which is similar to the trends of the fracture volume evolution. The research results can provide a reference for the study of the failure process and fracture evolution law of the grouting body.

Key words: CT scan, grouting body, digital reconstruction, fracture evolution, quantitative characterization

CLC Number: 

  • TU452
[1] WU Zi-long, YU Tao, YAN Chao, DENG Yong-feng, HU Guang-qing, GAO Yu-hang, WANG Zhang, WANG Li, . Analysis of loess heavy metal pollution in Shaanxi Province and a preliminary study on treatment of loess/bentonite cutoff walls [J]. Rock and Soil Mechanics, 2025, 46(9): 2738-2748.
[2] ZHANG Chun-rui, JI Hong-guang, FU Zhen, ZHANG Yue-zheng, SONG Yu, TIAN Zhu-hua, FAN Wen-bo, . Influence of dolomite on the physical and mechanical properties of siltstone [J]. Rock and Soil Mechanics, 2025, 46(9): 2661-2675.
[3] SUN Chuang, PU Yun-bo, AO Yun-he, TAO Qi, . Mechanical properties of freeze-thaw water-saturated fissured sandstone and its characterization of fine-scale fracture evolution [J]. Rock and Soil Mechanics, 2025, 46(8): 2339-2352.
[4] LONG Da-yu, WANG Yu, LI Peng, LI Chang-hong, CAI Mei-feng, . Experimental study on fatigue damage and failure characteristics of rock-backfill combination specimen with different cement-tailings ratios [J]. Rock and Soil Mechanics, 2024, 45(9): 2669-2681.
[5] CHEN Qian, WANG Zhi-liang, SHEN Lin-fang, HUA Tao, LI Shao-jun, XU Ze-min, . A numerical simulation of high-temperature rock hydraulic fracturing based on coupled thermo-mechanical peridynamics [J]. Rock and Soil Mechanics, 2024, 45(8): 2502-2514.
[6] ZHANG Yan, WANG Jin-chao, LIU Hou-cheng, GUO Qi-jun, . Characterization and analysis method of hidden karst caves in borehole surrounding rock based on directional acoustic scanning technology [J]. Rock and Soil Mechanics, 2024, 45(5): 1435-1445.
[7] ZHAO Zai-kun, WANG Tie-hang, ZHANG Liang, JIN Xin, LU Jie, RUAN Jia-bin, XING Yu, . Fracture evolution of unsaturated loess under high temperature and its quantitative analysis [J]. Rock and Soil Mechanics, 2024, 45(5): 1297-1308.
[8] AN Ran, CHEN Xin, ZHANG Xian-wei, WANG Gang, GAO Hao-dong , . Dynamic evolution characteristics of microscopic cracks in steel slag- stabilized soil under uniaxial loading [J]. Rock and Soil Mechanics, 2023, 44(S1): 300-308.
[9] WANG Kai, FU Qiang, XU Chao, AI Zi-bo, LI Dan, WANG Lei, SHU Long-yong, . Numerical simulation of interface mechanical effects of primary coal-rock combination [J]. Rock and Soil Mechanics, 2023, 44(S1): 623-633.
[10] GAO Hao-dong, AN Ran, KONG Ling-wei, ZHANG Xian-wei, LEI Xue-wen, . Evolution characteristics of meso-cracks in expansive soil under desiccating conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 442-450.
[11] SONG Yong-jun, SUN Yin-wei, LI Chen-jing, YANG Hui-min, ZHANG Lei-tao, XIE Li-jun, . Meso-fracture evolution characteristics of freeze-thawed sandstone based on discrete element method simulation [J]. Rock and Soil Mechanics, 2023, 44(12): 3602-3616.
[12] LUAN Ji-yuan, WANG Ji-peng . An experimental study of micro-scale mechanics and water retention characteristic of unsaturated granular soil based on 4D micro-tomography [J]. Rock and Soil Mechanics, 2023, 44(11): 3252-3260.
[13] TANG Yi-ju, HAO Tian-xuan, LIU Jing, LI Fan, ZHAO Li-zhen, WANG Ze-hua, WANG Hao-chang, LIU Xun. Characterization of infrared radiation and fracture evolution during destabilization of coal bodies with different degrees of damage [J]. Rock and Soil Mechanics, 2023, 44(10): 2907-2920.
[14] WANG Lei, CHEN Li-peng, LIU Huai-qian, ZHU Chuan-qi, LI Shao-bo, FAN Hao, ZHANG Shuai, WANG An-cheng. Dynamic behaviors and deterioration characteristics of coal under different initial gas pressures [J]. Rock and Soil Mechanics, 2023, 44(1): 144-158.
[15] SHEN Jia-wei, ZHOU Bo, FU Ru, KU Quan, WANG Hua-bin, . Experimental study on single particle crushing strength and patterns of calcareous sand [J]. Rock and Soil Mechanics, 2022, 43(S1): 312-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!