Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (S2): 431-442.doi: 10.16285/j.rsm.2020.1820

• Geotechnical Engineering • Previous Articles     Next Articles

Variation trend of soil pressure under cutting edges of the super large caisson during sinking stage

JIANG Fan, LIU Hua, YUE Qing, YANG Wen-shuang   

  1. China Railway Bridge & Tunnel Technologies Co., Ltd., Nanjing, Jiangsu 210061, China
  • Received:2020-12-03 Revised:2021-03-23 Online:2022-10-10 Published:2022-10-09

Abstract: Relying on the foundation engineering of the main tower caisson of Changtai Yangtze River Bridge, the variation of the soil pressure under the cutting edges of the caisson is modeled in the initial sinking stage by finite element method(FEM). In combination of the field measurements of the soil pressure, the variation trend of the soil pressure is analyzed along the cutting edges of the caisson during the excavation steps. The study shows that the numerical results are in agreement with the field measured soil pressures. The soil pressure will decrease in the region where the soil is excavated in caisson cells. It decreases more obviously while the excavation becomes deeper, and the soil pressure will increase in the cutting edges of the neighbouring caisson cells. In the process of excavation from internal caisson cells to outer ones, the soil pressure of the cutting edges of the outer bulkhead and skin of caisson accumulates. Finally, the soil reaches the bearing capacity and it develops into plastic state. The caisson sinks obviously. The work performed in the paper helps guide the smooth sinking of the similar caisson.

Key words: caisson foundation, sinking process, soil pressure under cutting edges, numerical simulation, field monitoring data

CLC Number: 

  • TU432
[1] CAI Qi-hang, DONG Xue-chao, GUO Ming-wei, LU Zheng, XU An, JIANG Fan, . Intelligent prediction of sinking of super-large anchorage caisson foundation based on soil pressure at cutting edges [J]. Rock and Soil Mechanics, 2025, 46(S1): 377-388.
[2] LI Bin, SHEN Hai-meng, LI Qi, LI Xia-ying, . A numerical simulation of dynamic evolution of permeability during granite shear process under different confining pressures [J]. Rock and Soil Mechanics, 2025, 46(S1): 437-453.
[3] SUN Zhi-liang, SHAO Min, WANG Ye-chen-zi, LIU Zhong, REN Wei-zhong, BAI Wei, LI Peng, . Mesoscopic simulation and analysis of influencing factors for ground subsidence induced by leakage through pipeline defect [J]. Rock and Soil Mechanics, 2025, 46(S1): 507-518.
[4] ZHANG Qi, WANG Ju, LIU Jiang-feng, CAO Sheng-fei, XIE Jing-li, CHENG Jian-feng, . Core disposal elements spacing design for high-level radioactive waste repository under coupled thermo-hydro-mechanical condition [J]. Rock and Soil Mechanics, 2025, 46(8): 2626-2638.
[5] ZHU Xian-xiang, ZHANG Qi, MA Jun-peng, WANG Yong-jun, MENG Fan-zhen, . Diffusion mechanism of seepage grouting in water-bearing sand layer under slurry-water replacement effect [J]. Rock and Soil Mechanics, 2025, 46(6): 1957-1966.
[6] LIANG Qing-guo, LI Jing, ZHANG Chong-hui, LIU Tong-tong, SUN Zhi-tao, . Mechanical response of tunnel lining in loess-mudstone composite strata under uniform expansion of foundation [J]. Rock and Soil Mechanics, 2025, 46(6): 1811-1824.
[7] YANG Ming-yun, CHEN Chuan, LAI Ying, CHEN Yun-min. Bearing capacity analysis of piggy-backed anchors under three-dimensional loading in clay [J]. Rock and Soil Mechanics, 2025, 46(2): 582-590.
[8] ZHANG Ling-bo, SUN Yi-song, CHENG Xing-lei, GUO Qun-lu, ZHAO Chuan, LIU Jing-hong. Characterization method for the three-dimensional soil cutting failure surface based on damage energy dissipation [J]. Rock and Soil Mechanics, 2025, 46(11): 3626-3636.
[9] ZHANG Xin-ye, LIU Zhi-wei, WENG Xiao-lin, LI Xuan-cong, ZHAO Jian-chong, LIU Xiao-guang. Stability and failure mode analysis of tunnel face in composite ground with upper sand and lower clay layers [J]. Rock and Soil Mechanics, 2025, 46(11): 3637-3648.
[10] WU Di, CHEN Rong, KONG Gang-qiang, NIU Geng, MIAO Yu-song, WANG Zhen-xing. Field test and numerical simulation on thermo-mechanical response characteristics of a bridge energy row pile under heating-cooling cycles [J]. Rock and Soil Mechanics, 2025, 46(11): 3649-3660.
[11] XU Guo-qing, HUANG Gao-xiang, WANG Xie-kang, LUO Deng-ze, LI Hong-tao, YAO Qiang, . Rock cracking and evolution mechanism under the action of new type of arc-shaped charge blasting [J]. Rock and Soil Mechanics, 2025, 46(10): 3267-3279.
[12] WANG Shuai, WANG Yu-hui, WANG Ling, LI Jia-qi, ZHAO Zi-hao, PANG Kai-xuan, . Influence mechanism of rock pore structure and mineral composition on crack propagation based on grain based model [J]. Rock and Soil Mechanics, 2025, 46(10): 3289-3301.
[13] YANG Li. Numerical analysis and bearing capacity determination criteria of field plate loading tests [J]. Rock and Soil Mechanics, 2024, 45(S1): 723-730.
[14] ZHAO Yang, LU Zheng, YAN Ting-zhou, LI Jian, TANG Chu-xuan, QIU Yu, YAO Hai-lin, . Vibration compaction behaviors and prestressing effect of geocell-reinforced subgrade [J]. Rock and Soil Mechanics, 2024, 45(S1): 771-782.
[15] XUE Xiu-li, XIE Wei-rui, LIAO Huan, ZENG Chao-feng, CHEN Hong-bo, XU Chang-jie, HAN Lei, . Barrier effect of adjacent deep-buried metro station and its influence on ground settlement induced by foundation pit dewatering [J]. Rock and Soil Mechanics, 2024, 45(9): 2786-2796.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!