Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (S2): 443-453.doi: 10.16285/j.rsm.2022.0123

• Geotechnical Engineering • Previous Articles     Next Articles

Key technologies of building information model integration and simulation in geotechnical engineering

ZHOU Hao1, 2, CHEN Guo-liang2, HE Xiang1, WU Jia-ming3, 4, ZHANG Rong-tang1, YIN Da-wei5, 6, YUAN Kun-bin5, 6, WU Zhe5, 6   

  1. 1. School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan, Hubei 430023, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, Hubei 430063, China; 4. National & Local Joint Engineering Research Center of Underwater Tunneling Technology, Wuhan, Hubei 430063, China; 5. China State Construction International Holdings Limited, Hong Kong 999077, China; 6. China State Construction International Investments(Hubei) Limited, Wuhan, Hubei 430000, China
  • Received:2022-01-28 Revised:2022-04-20 Online:2022-10-10 Published:2022-10-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(52079135) and the National Key Research and Development Program (2021YFF0500301).

Abstract: geotechnical engineering; building information model(BIM); integration; construction simulation; numerical simulation

Key words: geotechnical engineering, building information model(BIM), integration, construction simulation, numerical simulation

CLC Number: 

  • TU42
[1] SUN Zhi-liang, SHAO Min, WANG Ye-chen-zi, LIU Zhong, REN Wei-zhong, BAI Wei, LI Peng, . Mesoscopic simulation and analysis of influencing factors for ground subsidence induced by leakage through pipeline defect [J]. Rock and Soil Mechanics, 2025, 46(S1): 507-518.
[2] YU Zhao-sheng, CHEN Xiao-bin, ZHOU Yu-qing, LÜ Xin-long, . Release rate of disintegration surface and disintegration characteristics of red-layer soft rock [J]. Rock and Soil Mechanics, 2025, 46(S1): 285-296.
[3] JIANG Xiao-tong, ZHANG Xi-wen, LÜ Ying-hui, LI Ren-jie, JIANG Hao, . Current applications and future prospects of machine learning in geotechnical engineering [J]. Rock and Soil Mechanics, 2025, 46(S1): 419-436.
[4] LI Bin, SHEN Hai-meng, LI Qi, LI Xia-ying, . A numerical simulation of dynamic evolution of permeability during granite shear process under different confining pressures [J]. Rock and Soil Mechanics, 2025, 46(S1): 437-453.
[5] ZHANG Qi, WANG Ju, LIU Jiang-feng, CAO Sheng-fei, XIE Jing-li, CHENG Jian-feng, . Core disposal elements spacing design for high-level radioactive waste repository under coupled thermo-hydro-mechanical condition [J]. Rock and Soil Mechanics, 2025, 46(8): 2626-2638.
[6] ZHU Xian-xiang, ZHANG Qi, MA Jun-peng, WANG Yong-jun, MENG Fan-zhen, . Diffusion mechanism of seepage grouting in water-bearing sand layer under slurry-water replacement effect [J]. Rock and Soil Mechanics, 2025, 46(6): 1957-1966.
[7] LIANG Qing-guo, LI Jing, ZHANG Chong-hui, LIU Tong-tong, SUN Zhi-tao, . Mechanical response of tunnel lining in loess-mudstone composite strata under uniform expansion of foundation [J]. Rock and Soil Mechanics, 2025, 46(6): 1811-1824.
[8] YANG Ming-yun, CHEN Chuan, LAI Ying, CHEN Yun-min. Bearing capacity analysis of piggy-backed anchors under three-dimensional loading in clay [J]. Rock and Soil Mechanics, 2025, 46(2): 582-590.
[9] ZHANG Ling-bo, SUN Yi-song, CHENG Xing-lei, GUO Qun-lu, ZHAO Chuan, LIU Jing-hong. Characterization method for the three-dimensional soil cutting failure surface based on damage energy dissipation [J]. Rock and Soil Mechanics, 2025, 46(11): 3626-3636.
[10] ZHANG Xin-ye, LIU Zhi-wei, WENG Xiao-lin, LI Xuan-cong, ZHAO Jian-chong, LIU Xiao-guang. Stability and failure mode analysis of tunnel face in composite ground with upper sand and lower clay layers [J]. Rock and Soil Mechanics, 2025, 46(11): 3637-3648.
[11] WU Di, CHEN Rong, KONG Gang-qiang, NIU Geng, MIAO Yu-song, WANG Zhen-xing. Field test and numerical simulation on thermo-mechanical response characteristics of a bridge energy row pile under heating-cooling cycles [J]. Rock and Soil Mechanics, 2025, 46(11): 3649-3660.
[12] XU Guo-qing, HUANG Gao-xiang, WANG Xie-kang, LUO Deng-ze, LI Hong-tao, YAO Qiang, . Rock cracking and evolution mechanism under the action of new type of arc-shaped charge blasting [J]. Rock and Soil Mechanics, 2025, 46(10): 3267-3279.
[13] WANG Shuai, WANG Yu-hui, WANG Ling, LI Jia-qi, ZHAO Zi-hao, PANG Kai-xuan, . Influence mechanism of rock pore structure and mineral composition on crack propagation based on grain based model [J]. Rock and Soil Mechanics, 2025, 46(10): 3289-3301.
[14] YANG Li. Numerical analysis and bearing capacity determination criteria of field plate loading tests [J]. Rock and Soil Mechanics, 2024, 45(S1): 723-730.
[15] ZHAO Yang, LU Zheng, YAN Ting-zhou, LI Jian, TANG Chu-xuan, QIU Yu, YAO Hai-lin, . Vibration compaction behaviors and prestressing effect of geocell-reinforced subgrade [J]. Rock and Soil Mechanics, 2024, 45(S1): 771-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!