Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (5): 1353-1362.doi: 10.16285/j.rsm.2022.0870

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic response and characteristics of tapered rigid core composite cement-soil piles under cyclic loading

HE Jie1, GUO Duan-wei1, SONG De-xin2, LIU Meng-xin1, ZHANG Lei1, WEN Qi-feng1   

  1. 1. College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan 412007, China; 2. Hunan No.2 Engineering Co., Ltd., Changsha, Hunan 410015, China
  • Received:2022-06-09 Accepted:2022-07-27 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the Natural Science Foundation of Hunan Province (2020JJ6007).

Abstract: Tapered rigid core composite cement-soil pile is an emerging type of composite pile. In order to investigate its bearing behavior in engineering applications such as highways and railways under long-term cyclic loading, model tests were conducted on four composite piles with different pile core wedge angles, static loading ratios and cyclic loading ratios. The ultimate bearing capacity under static loading as well as the cumulative settlement, pile axial force distribution, tip resistance and side friction resistance were evaluated. The results indicated that the bearing capacity of tapered inner core composite piles under static loading was better than that of constant cross-section inner core composite piles. The cumulative settlement of composite piles increased with the increase of static loading ratio and cyclic loading ratio, and can be classified into three types of stability, development and failure under different combinations of dynamic and static loading. At the same time, the value range of load satisfying each type was also given. The interaction between the core pile and the cement-soil outer pile was not noticeably diminished, and the composite pile with a tapered core pile could fully mobilize the side friction resistance of the upper soil around the pile sides and effectively reduce the stress concentration at the tip of the core pile. Therefore, its ability to resist cyclic loading was better than that of the composite pile with a constant cross-section core pile.

Key words: tapered rigid core composite cement-soil pile, cyclic loading, ultimate bearing capacity, cumulative settlement, pile stress

CLC Number: 

  • TU 473
[1] FU Qiang, YANG Ke, LIU Qin-jie, SONG Tao-tao, WU Ben-niu, YU Peng, . Interface strength characteristics of surrounding rock-lining composite structures under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(S1): 40-52.
[2] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[3] ZHANG Tian-jun, TIAN Jia-wei, ZHANG Lei, PANG Ming-kun, PAN Hong-yu, MENG Wei, HE Sui-nan, . Permeability and tortuosity evolution of crushed coal under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1409-1418.
[4] CAO Su-nan, LI Chun-hong, CHEN Yuan-bing, FEI Kang, . Shear characteristics of biomimetic sand-structure interface under cyclic loading conditions [J]. Rock and Soil Mechanics, 2025, 46(3): 821-832.
[5] TANG Jin-zhou, TANG Wen-hao, YANG Ke, ZHAO Yan-lin, LIU Qin-jie, DUAN Min-ke, TAN Zhe, . Mechanical response characteristics and seepage evolution patbern of sandstone with an inclined single fracture under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(1): 199-212.
[6] WU Peng, CHEN Jian, FU Xiao-dong, HUANG Jue-hao, . Deformation characteristics and energy evolution pattern of both dry and saturated argillaceous siltstone under cyclic load applications [J]. Rock and Soil Mechanics, 2024, 45(S1): 195-207.
[7] LIU Xiao-pei, JIANG Quan, LI Shao-jun, XIN Jie, CHEN Peng-fei, . Energy characteristics of progressive damage of Jinping marble under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2024, 45(8): 2373-2386.
[8] GAO Lu-chao, DAI Guo-liang, ZHANG Ji-sheng, WAN Zhi-hui, YAO Zhong-yuan, WANG Yang, . Centrifugal model tests on lateral cyclic loading behavior of large-diameter monopiles in soft clay [J]. Rock and Soil Mechanics, 2024, 45(8): 2411-2420.
[9] DENG You-sheng, YAO Zhi-gang, FENG Ai-lin, LI Long, MENG Li-qing, ZHAO Hui-ling, . Bearing characteristics of coal gangue pile-net composite embankment with different cushion layers [J]. Rock and Soil Mechanics, 2024, 45(7): 1895-1905.
[10] ZHAO Chong-xi, XU Chao, WANG Qing-ming, ZHANG Sheng, LI Hao-yu, . Centrifuge load test on ultimate bearing capacity of geosynthetic-reinforced soil abutment [J]. Rock and Soil Mechanics, 2024, 45(6): 1643-1650.
[11] YIN Shan, SONG Da-zhao, WANG En-yuan, HE Xue-qiu, LI Zhong-hui, LIU Xiao-fei, LIU Yu-bing, . Study on the magnetic field response law of sandstone during deformation and failure [J]. Rock and Soil Mechanics, 2024, 45(6): 1803-1812.
[12] XIONG Gen, FU Dong-kang, ZHU Bin, LAI Ying, . Centrifuge modelling of suction anchor subjected to inclined load in soft clay [J]. Rock and Soil Mechanics, 2024, 45(5): 1472-1480.
[13] LIU Han-xiang, YE Diao-yu, BIE Peng-fei, ZHU Xing, . Experimental study of microscopic and mesoscopic damage features of limestone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2024, 45(3): 685-696.
[14] ZHOU Zhi-xiong, ZHOU Feng-xi, CAO Xiao-lin, WANG Zhen, . Variational limit equilibrium method analysis of ultimate bearing capacity of composite foundation: vertical reinforcement [J]. Rock and Soil Mechanics, 2024, 45(12): 3748-3754.
[15] LIU Xiao, ZHANG Xiao-jun, WEI Jin-zhu, HE Jun-ling, WANG Jing-tao, . Experimental study on the stress relaxation characteristics in straight-wall-top-arch roadway (tunnel) under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2023, 44(S1): 476-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!