Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (3): 714-724.doi: 10.16285/j.rsm.2023.0537

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Excess pore pressure ratios for the assessment of static liquefaction in fiber-reinforced sand

ZHANG Xi-dong1, 2, DONG Xiao-qiang1, 2, DUAN Wei1, 2, XIE Ming-xing1, 2   

  1. 1. School of Civil Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; 2. The Key Laboratory of Civil Engineering Disaster Prevention and Control in Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2023-05-01 Accepted:2023-07-13 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by the Young Scholar of Science and Technology Committee of Shanxi Province Scheme, China (20210302124110), China Postdoctoral Science Foundation (2022M712338) and the National Natural Science Foundation of China (52208362, 52108332, 51978438, 52281340410).

Abstract:

Fiber-reinforcing technology involves adding discrete and tension-resistant fibers into soils to improve the mechanical properties of the soils. This study investigates the static liquefaction responses of the fibre-reinforced sand in loose states by performing the undrained triaxial compression tests. The feasibility of varied excess pore pressure ratios for assessing the liquefaction of fibre-reinforced sand also has been discussed. The test results reveal that the loose sand without reinforcement is highly susceptible to static liquefaction under undrained triaxial compression, while the inclusion of fibers prevents the development of static liquefaction in the sand samples. The presence of fibers significantly alters the effective stress path experienced by the sand skeleton and thereby influencing its liquefaction response. The conventionally defined excess pore pressure ratio (ru) based on the principle of effective stress may provide incorrect indications of liquefaction in fiber-reinforced sand. To address this, the study introduces the newly defined effective excess pore pressure ratio (ru) and the skeleton excess pore pressure ratio (r* u), which offer improved indications of liquefaction in reinforced sand. By invoking a constitutive framework based on the rule of mixture, the stress contributions of fibers are quantified. The skeleton excess pore pressure ratio takes into account stress contributions of the fibers and reveals how the external load is shared among the fibers, sand skeleton and the pore water. When r* u= 1 is attained, the effective mean stress carried by the sand skeleton drops to zero, resulting in liquefaction of the fiber-reinforced sand.

Key words: fiber-reinforcement, sand, liquefaction, fiber stress, excess pore pressure ratio

CLC Number: 

  • TU441
[1] WANG Ning-bo, YAO Yang-ping, LIU Lin, LI Xiang-yu, MAO An-qi, LI Ning, . Unified hardending model for sand considering confining pressure effects [J]. Rock and Soil Mechanics, 2025, 46(S1): 297-308.
[2] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[3] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[4] JIN Gui-xiao, LIN Shao-cong, JIANG Qi-wu, HUANG Ming, LI Xi, . Seepage mathematical model of enzyme-induced calcium carbonate precipitation-treated sandy soil based on the Kozeny-Carman equation [J]. Rock and Soil Mechanics, 2025, 46(8): 2376-2386.
[5] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[6] LEI Rui-de, GU Qing-heng, HU Chao, HE Pei, ZHOU Lin-sen, . Acoustic emission signal characteristics and precursory recognition of rock failure in fractured sandstone [J]. Rock and Soil Mechanics, 2025, 46(7): 2023-2038.
[7] FAN Meng, LI Jing-jun, YANG Zheng-quan, LIU Xiao-sheng, ZHU Kai-bin, ZHAO Jian-ming, . Applicability of standard penetration test based liquefaction assessment methods for sandy soil in deep layer [J]. Rock and Soil Mechanics, 2025, 46(7): 2085-2094.
[8] CHEN Jia-rui, FAN Bao-yun, YE Jian-hong, ZHANG Chun-shun, . Particle breakage and its evolution model of calcareous sand through triaxial tests [J]. Rock and Soil Mechanics, 2025, 46(7): 2095-2105.
[9] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[10] ZHU Xian-xiang, ZHANG Qi, MA Jun-peng, WANG Yong-jun, MENG Fan-zhen, . Diffusion mechanism of seepage grouting in water-bearing sand layer under slurry-water replacement effect [J]. Rock and Soil Mechanics, 2025, 46(6): 1957-1966.
[11] FU Hai-ying, ZHONG Yu-wei, WANG Xiao-wen, WU Bo-han, YUAN Ran, . Critical state parameter model of sand based on subloading surface theory [J]. Rock and Soil Mechanics, 2025, 46(6): 1788-1798.
[12] QI Kai, WAN Zhi-hui, DAI Guo-liang, HU Tao, ZHOU Feng, ZHANG Peng, . Mechanical properties and microscopic mechanisms of calcareous sand solidified with different grouting materials [J]. Rock and Soil Mechanics, 2025, 46(6): 1825-1838.
[13] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[14] LIU Hong-shuai, YANG Jian-sheng, SONG Dong-song, SUN Qiang-qiang, . Centrifuge modeling on ground response of dry sand site under near-fault pulsed and non-pulsed ground motions [J]. Rock and Soil Mechanics, 2025, 46(5): 1429-1441.
[15] WU Qing-qian, SHI Lu, LI Xiao-chun, BAI Bing, . Experimental study on effects of H2O and supercritical CO2 on mechanical properties of sandstone with a low clay mineral content [J]. Rock and Soil Mechanics, 2025, 46(5): 1442-1454.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!