Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (8): 2387-2396.doi: 10.16285/j.rsm.2024.0416

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

A permeability model for gas hydrate-bearing sediments considering the changes in hydrate occurring habits

HUANG Nan1, 2, ZHU Bin1, 2, 3, WANG Lu-jun1, 2, 3   

  1. 1. Key Laboratory of Soft Soils and Geoenvironmental Engineering of the Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2023-09-11 Accepted:2023-11-15 Online:2024-08-10 Published:2024-08-12
  • Supported by:
    This work was supported by the Fundamental Research Funds for the Central Universities (226-2023-00083) and the National Natural Science Foundation of China (51988101, 52127815).

Abstract: The permeability of gas hydrate-bearing sediments (GHBS) is an important factor affecting the gas-liquid transport characteristics during the processes of hydrate formation and decomposition, and is often selected as an indicator for evaluating the extraction capacity of natural gas hydrates. The changes in hydrate occurring habits and hydrate saturation in GHBS pores significantly influence GHBS permeability. Existing permeability models are mostly based on a single hydrate occurring habit, making it difficult to consider the impact of changes in hydrate occurring habits on GHBS permeability. Based on the parallel capillary tube models, considering the influence of the varying of hydrate occurring habits on pore structure of GHBS, a mixed occurring habit with grain-coating and pore-filling coexisting is proposed. A logical function with two parameters is proposed to describe how hydrate occurring habits change with saturation, and a permeability model of GHBS considering the variation of hydrate occurring habits is established. The correctness of the model is verified by comparing it with measurement data obtained from laboratory and in-situ permeability tests, and the effectiveness of the model is analyzed by comparing it with existing mathematical models. The results indicate that changes in hydrate saturation during hydrate formation usually lead to changes in hydrate occurring habits, affecting the trend of the GHBS permeability with hydrate saturation. The changes in hydrate occurring habits vary under different formation conditions, and the main characteristics of the changing process are reflected in the critical hydrate saturation corresponding to the transformation of the main occurring habit, as well as the direction and trend of changes. Compared to the existing models, this model can capture the changing characteristics of permeability when the hydrate occurring habit changes, and can better predict measurement data from both laboratory and in-situ permeability tests of GHBS.

Key words: natural gas hydrate, permeability, hydrate occurring habits, hydrate saturation, analysis model

CLC Number: 

  • TU 43
[1] ZHANG Xing-wen, CAO Jing, LEI Shu-yu, LI Yu-hong, CHENG Yun, ZHANG Ning-rui. Effect of fulvic acid environment on the structure and permeability of cement-soil containing humic acid [J]. Rock and Soil Mechanics, 2025, 46(S1): 249-261.
[2] LI Bin, SHEN Hai-meng, LI Qi, LI Xia-ying, . A numerical simulation of dynamic evolution of permeability during granite shear process under different confining pressures [J]. Rock and Soil Mechanics, 2025, 46(S1): 437-453.
[3] CAO Rui-dong, LIU Si-hong, TIAN Jin-bo, LU Yang, ZHANG Yong-gan, LI Fan, . Experimental study and predictive model for seepage characteristics of geotextiles for soilbags considering tensile deformation [J]. Rock and Soil Mechanics, 2025, 46(9): 2711-2720.
[4] ZHANG Tian-jun, TIAN Jia-wei, ZHANG Lei, PANG Ming-kun, PAN Hong-yu, MENG Wei, HE Sui-nan, . Permeability and tortuosity evolution of crushed coal under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1409-1418.
[5] XIAO Zhi-yong, WANG Gang, LIU Jie, DENG Hua-feng, ZHENG Cheng-cheng, JIANG Feng, . Improved apparent permeability model based on equivalent fractures and variable slip effects analysis [J]. Rock and Soil Mechanics, 2025, 46(5): 1466-1479.
[6] YANG Liu, JI Ming-xiu, ZHAO Yan, GENG Zhen-kun, LI Si-yuan, MA Xiong-de, ZHANG Qian, . Influence mechanism of tight sandstone pore structure on two-phase displacement characteristics and CO2 storage efficienc [J]. Rock and Soil Mechanics, 2025, 46(4): 1187-1195.
[7] XUE Qin-pei, CHEN Hong-xin, FENG Shi-jin, LIU Xiao-xuan, XIE Wei, . Evolution of permeability characteristics and micro-mechanism of geopolymer cutoff wall materials under dry-wet cycling [J]. Rock and Soil Mechanics, 2025, 46(3): 811-820.
[8] ZHENG Si-wei, HU Ming-jian, HUO Yu-long, . Factors affecting permeability of calcareous sands and predictive models [J]. Rock and Soil Mechanics, 2024, 45(S1): 217-224.
[9] WEN Shao-jie, CHENG Wen-chieh, HU Wen-le, . Experimental study on gas breakthrough pressure and cyclic gas permeability characteristics of loess cover layer [J]. Rock and Soil Mechanics, 2024, 45(S1): 471-476.
[10] JIANG Yu-jing, YAN Peng, LUAN Heng-jie, LIU Ming-kang, LIANG Wei, DU Xiao-yu, MA Xian-zhuang, SHI Yi-chen, . Experimental study on natural gas hydrate production characteristics in stepwise depressurization with vertical well at different depressurization rates [J]. Rock and Soil Mechanics, 2024, 45(9): 2682-2694.
[11] WANG Wei, CHEN Wei-zhong, YANG Dian-sen, YANG Guang-hua, ZHOU Xiao-wen, YUAN Ming-dao, SHI Yong-sheng, LIU Yi-jie, . Theoretical study of gas periodic oscillation method for low permeability testing in porous media [J]. Rock and Soil Mechanics, 2024, 45(7): 1939-1956.
[12] JIANG Qi-wu, HUANG Ming, CUI Ming-juan, JIN Gui-xiao, PENG Yi-xin, . Study on the mechanism and optimal proportioning test of pea gravel backfill behind TBM tunnel linings reinforced with enzyme-induced calcium carbonate precipitation (EICP) technology [J]. Rock and Soil Mechanics, 2024, 45(7): 2037-2049.
[13] CUI Yun-liang, PAN Fang-ran, GAO Xuan-yuan, JIN Zi-yuan, . A calculation method of permeability coefficient of clogging zone in vacuum preloading of waste slurry [J]. Rock and Soil Mechanics, 2024, 45(7): 2085-2093.
[14] WANG Xin-zhi, HUANG Peng, LEI Xue-wen, WEN Dong-sheng, DING Hao-zhen, LIU Kai-cheng, . Permeability test of zinc sulfate bonded coral sand and discussion on its engineering application [J]. Rock and Soil Mechanics, 2024, 45(7): 2094-2104.
[15] HUANG Jia-jia, JIANG Ming-jing, WANG Hua-ning, . Reliability analysis of wellbore stability for hydrate reservoirs in Shenhu area of the South China Sea [J]. Rock and Soil Mechanics, 2024, 45(5): 1505-1516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!