Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (8): 2515-2526.doi: 10.16285/j.rsm.2024.0157

• Numerical Analysis • Previous Articles    

Numerical analysis of landslides based on coupling model of material point method and depth integral

ZHANG Wei1, 2, YAN Fei1, 2, WANG Zhao-feng1, 2, LI Shao-jun1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-01-29 Accepted:2024-03-26 Online:2024-08-10 Published:2024-08-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51879261).

Abstract: The depth integration algorithm simplifies the three-dimensional model of landslide sliding along the surface to a two-dimensional model, enhancing solving efficiency by diminishing the number of unknowns in the governing equation. Material point method (MPM) has the advantages of both grid based method and meshless method, and can avoid mesh distortion when simulating large landslide deformation. A numerical model for landslides has been developed using the depth-integral coupled material point method, with a detailed description of the algorithm's specific process provided. Utilizing the influence domain material point method (IDMPM), two benchmark tests were conducted on typical landslide scenarios: one with a non-inclined, smooth bottom, and the other with an inclined, non-smooth slope. The depth integral coupled material point method model demonstrates high accuracy in predicting key slip parameters, including remote distance, velocity, and depth. In contrast to the conventional material point method, the depth integral coupled material point method model significantly enhances operational efficiency. Furthermore, the research outcomes offer a robust theoretical foundation and timely support for analyzing and predicting the extent of damage in landslide geological disasters, conducting hazard assessments, and facilitating emergency response.

Key words: depth integral, material point method, landslide, large deformation, depth integral coupled material point method

CLC Number: 

  • TU 452
[1] DONG Jian-hua, YANG Bo, TIAN Wen-tong, WU Xiao-lei, HE Peng-fei, ZHAO Lü-hua, LIAN Bo, . Research and development of novel anti-slide pile to prevent liquefaction and shaking table model test of seismic response [J]. Rock and Soil Mechanics, 2025, 46(4): 1084-1094.
[2] ZHOU Bo-han, ZHANG Wen-li, WANG Dong, . Numerical study of ball penetrometer for predicting strength of overconsolidated soils [J]. Rock and Soil Mechanics, 2025, 46(4): 1303-1309.
[3] SUN Wen-chao, WANG Jun-hao, XU Wen-jie, DONG Xiao-yang, REN He, WANG Hong-bing, ZHANG Xue-jie, WANG Heng-wei, . Stability and disaster dynamics analysis of highway debris dump site based on material point method [J]. Rock and Soil Mechanics, 2025, 46(3): 991-1000.
[4] WANG Xue-bin, CHEN Shuang-yin, ZHENG Yi-fang, LIAO Pei-bin, . Lagrangian-discrete element method considering creep shear cracking and its application [J]. Rock and Soil Mechanics, 2025, 46(2): 613-624.
[5] CHEN Huai-lin, YANG Tao, RAO Yun-kang, ZHANG Zhe, WU Hong-gang, XIE Jiang-wei, TENG Han-qing. Calculation method of sliding surface stress based on segmented sliding surface stress measurement system [J]. Rock and Soil Mechanics, 2025, 46(11): 3562-3573.
[6] LOU Xu-long, ZHANG Ze-rui, KONG De-qiong, CHEN Xing-chao, ZHU Bin, . Large deformation limit analysis of pipe-soil interaction for heavy pipes in deep water [J]. Rock and Soil Mechanics, 2025, 46(10): 3234-3242.
[7] QIAN Fa-qiao, DENG Ya-hong, MU Huan-dong, YANG Nan, LIU Fan, WANG Meng-chen, . Seismic stability evaluation method of slope based on wavelet transform and pseudo-dynamic method [J]. Rock and Soil Mechanics, 2025, 46(1): 88-96.
[8] LI Qiu-wang, FENG Wan-li, HUANG Bo-lin, DONG Xing-chen, CHEN Yun-fei, . Prediction analysis of wading landslide impulse wave in Three Gorges Reservoir area [J]. Rock and Soil Mechanics, 2024, 45(S1): 424-432.
[9] ZHAO Kuan-yao, XU Qiang, CHEN Wan-lin, PENG Da-lei, GAO Deng-hui, . Infiltration process of loess in flood irrigation area [J]. Rock and Soil Mechanics, 2024, 45(9): 2754-2764.
[10] LIN Bin-qiang, ZHANG De-sheng, JIAN Wen-bin, DOU Hong-qiang, WANG Hao, FAN Xiu-feng, . Response of vegetated slope stability under wind-driven rain conditions [J]. Rock and Soil Mechanics, 2024, 45(9): 2765-2774.
[11] XIE Zhou-zhou, ZHAO Lian-heng, LI Liang, HUANG Dong-liang, ZHANG Zi-jian, ZHOU Jing, . Difference of dynamic responses of soil-rock mixture slopes with different rock contents based on shaking table test [J]. Rock and Soil Mechanics, 2024, 45(8): 2324-2337.
[12] MA Deng-hui, HAN Xun, CAI Zheng-yin, GUAN Yun-fei, . Numerical analysis of soil pressure distribution law on pile shaft of displacement pile [J]. Rock and Soil Mechanics, 2024, 45(6): 1863-1872.
[13] ZHANG Wei-jie, ZHANG Wei, CHEN Yu, DU Ying, JI Jian, GAO Yu-feng, . Influence of anisotropy of fluctuation scale of cohesion random field on the run-out distance of flow-like landslides [J]. Rock and Soil Mechanics, 2024, 45(4): 1039-1050.
[14] HAN Xu-dong, YANG Xiu-yuan, SUN Xiu-juan, SONG Wei, BAO Yi-ding, WANG Chun-hui, . Quantitative prediction model of dynamic erosion process for long run-out accumulation landslides [J]. Rock and Soil Mechanics, 2024, 45(4): 1190-1200.
[15] CHEN Ding, HUANG Wen-xiong, HUANG Dan. A frictional contact algorithm in smoothed particle method with application in large deformation of soils [J]. Rock and Soil Mechanics, 2024, 45(3): 885-894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!