Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (8): 2389-2399.doi: 10.16285/j.rsm.2022.1114

• Geotechnical Engineering • Previous Articles     Next Articles

A calculation method for deformation of diaphragm wall of narrow deep foundation pit in soft soil considering spatio-temporal effect

ZHANG Kun-yong1, 2, ZHANG Meng2, SUN Bin3, LI Fu-dong4, JIAN Yong-zhou4   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210024, China; 2. Geotechnical Research Institute, Hohai University, Nanjing, Jiangsu 210024, China; 3. Jiangsu Zhongshe Group Co. Ltd., Wuxi, Jiangsu 214072, China; 4. China Communications Construction Co., Ltd-Second Highway Bureau Fourth Engineering Co., Ltd., Luoyang, Henan 471000, China
  • Received:2022-07-18 Accepted:2023-03-14 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41530637).

Abstract: To accurately evaluate the safety of foundation pit construction in soft soil area and its impact on the surroundings, the time and space influencing factors during excavation cannot be ignored. In this paper, based on the excavation of a deep foundation pit in the soft soil area of the Yangtze River floodplain, a 3D finite element model was established considering the combination of bottom-up and top-down constructions, and the calculated values of horizontal displacement of the diaphragm wall were compared with the measured values to verify the reliability of the finite element calculation. Based on theoretical analysis, numerical calculation and measured data, the influence coefficient of corner effect and equivalent horizontal resistance coefficient were used to measure the influence of spatio-temporal effect on the deformation of supporting wall, and the calculation method of the diaphragm wall deformation considering spatio-temporal effect was proposed. The necessity of the spatio-temporal effect and the rationality of the proposed method in the design of foundation pit in soft soil area were verified by engineering examples. The results can provide beneficial reference for the calculation of deep foundation pit deformation in soft soil area.

Key words: foundation pit excavation, numerical simulation, spatio-temporal effect, supporting structure deformation calculation

CLC Number: 

  • TU 473
[1] SUN Zhi-liang, SHAO Min, WANG Ye-chen-zi, LIU Zhong, REN Wei-zhong, BAI Wei, LI Peng, . Mesoscopic simulation and analysis of influencing factors for ground subsidence induced by leakage through pipeline defect [J]. Rock and Soil Mechanics, 2025, 46(S1): 507-518.
[2] LI Bin, SHEN Hai-meng, LI Qi, LI Xia-ying, . A numerical simulation of dynamic evolution of permeability during granite shear process under different confining pressures [J]. Rock and Soil Mechanics, 2025, 46(S1): 437-453.
[3] ZHANG Qi, WANG Ju, LIU Jiang-feng, CAO Sheng-fei, XIE Jing-li, CHENG Jian-feng, . Core disposal elements spacing design for high-level radioactive waste repository under coupled thermo-hydro-mechanical condition [J]. Rock and Soil Mechanics, 2025, 46(8): 2626-2638.
[4] LIANG Qing-guo, LI Jing, ZHANG Chong-hui, LIU Tong-tong, SUN Zhi-tao, . Mechanical response of tunnel lining in loess-mudstone composite strata under uniform expansion of foundation [J]. Rock and Soil Mechanics, 2025, 46(6): 1811-1824.
[5] ZHU Xian-xiang, ZHANG Qi, MA Jun-peng, WANG Yong-jun, MENG Fan-zhen, . Diffusion mechanism of seepage grouting in water-bearing sand layer under slurry-water replacement effect [J]. Rock and Soil Mechanics, 2025, 46(6): 1957-1966.
[6] YANG Ming-yun, CHEN Chuan, LAI Ying, CHEN Yun-min. Bearing capacity analysis of piggy-backed anchors under three-dimensional loading in clay [J]. Rock and Soil Mechanics, 2025, 46(2): 582-590.
[7] ZHANG Ling-bo, SUN Yi-song, CHENG Xing-lei, GUO Qun-lu, ZHAO Chuan, LIU Jing-hong. Characterization method for the three-dimensional soil cutting failure surface based on damage energy dissipation [J]. Rock and Soil Mechanics, 2025, 46(11): 3626-3636.
[8] ZHANG Xin-ye, LIU Zhi-wei, WENG Xiao-lin, LI Xuan-cong, ZHAO Jian-chong, LIU Xiao-guang. Stability and failure mode analysis of tunnel face in composite ground with upper sand and lower clay layers [J]. Rock and Soil Mechanics, 2025, 46(11): 3637-3648.
[9] WU Di, CHEN Rong, KONG Gang-qiang, NIU Geng, MIAO Yu-song, WANG Zhen-xing. Field test and numerical simulation on thermo-mechanical response characteristics of a bridge energy row pile under heating-cooling cycles [J]. Rock and Soil Mechanics, 2025, 46(11): 3649-3660.
[10] XU Guo-qing, HUANG Gao-xiang, WANG Xie-kang, LUO Deng-ze, LI Hong-tao, YAO Qiang, . Rock cracking and evolution mechanism under the action of new type of arc-shaped charge blasting [J]. Rock and Soil Mechanics, 2025, 46(10): 3267-3279.
[11] WANG Shuai, WANG Yu-hui, WANG Ling, LI Jia-qi, ZHAO Zi-hao, PANG Kai-xuan, . Influence mechanism of rock pore structure and mineral composition on crack propagation based on grain based model [J]. Rock and Soil Mechanics, 2025, 46(10): 3289-3301.
[12] YANG Li. Numerical analysis and bearing capacity determination criteria of field plate loading tests [J]. Rock and Soil Mechanics, 2024, 45(S1): 723-730.
[13] ZHAO Yang, LU Zheng, YAN Ting-zhou, LI Jian, TANG Chu-xuan, QIU Yu, YAO Hai-lin, . Vibration compaction behaviors and prestressing effect of geocell-reinforced subgrade [J]. Rock and Soil Mechanics, 2024, 45(S1): 771-782.
[14] XUE Xiu-li, XIE Wei-rui, LIAO Huan, ZENG Chao-feng, CHEN Hong-bo, XU Chang-jie, HAN Lei, . Barrier effect of adjacent deep-buried metro station and its influence on ground settlement induced by foundation pit dewatering [J]. Rock and Soil Mechanics, 2024, 45(9): 2786-2796.
[15] LÜ Mao-lin, ZHU Zhen-de, ZHOU Lu-ming, GE Xin-liang, . Numerical simulation of hydraulic fracture propagation in rock masses with pre-existing double fractures using the phase field method [J]. Rock and Soil Mechanics, 2024, 45(6): 1850-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!