Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (3): 835-845.doi: 10.16285/j.rsm.2023.0485

• Geotechnical Engineering • Previous Articles     Next Articles

Probabilistic back analysis of slope parameters and reliability evaluation using improved Bayesian updating method

HU Hong-peng1, JIANG Shui-hua1, CHEN Dong2, HUANG Jin-song1, ZHOU Chuang-bing1   

  1. 1. School of Infrastructure Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; 2. Jiangxi Provincial Natural Gas Group Co., Ltd., Pipeline Branch Nanchang, Nanchang, Jiangxi 330096, China
  • Received:2023-04-19 Accepted:2023-06-12 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52222905, 52179103, 42272326) and Jiangxi Provincial Natural Science Foundation (20232ACB204031, 20224ACB204019).

Abstract: The geomechanical parameters for a particular site exhibit inherent uncertainties due to geological processes, and probabilistic back analysis incorporating field observation data can effectively reduce these uncertainties. Although the BUS (Bayesian Updating with Subset simulation) method can transform the high-dimensional probabilistic back analysis problem with the equality site information into an equivalent structural reliability problem, the value of the constructed likelihood function can become extremely small or even lower than the computer floating-point operation accuracy as the field observation data increase, which might seriously affect the computational efficiency and accuracy of probabilistic back analysis. To this end, this paper proposes an improved BUS method based on the parallel system reliability analysis. Starting from the Cholesky decomposition-based midpoint method, the total failure domain with a low acceptance rate is decomposed into several sub-failure domains with a high acceptance rate so as to avoid the “curse of dimensionality” arising from the integration of a large amount of field observation data, and to achieve accurate back analysis of the geomechanical parameters of slopes. Finally, the effectiveness of the proposed method is validated through a case study of an undrained saturated clay slope. The results show that the proposed method can integrate a large number of borehole data and the observation information of slope service state for efficient probabilistic back analysis of geomechanical parameters and slope reliability evaluation with reasonable accuracy. The proposed method provides an effective tool for high-dimensional probabilistic back analysis of spatially variable soil parameters and slope reliability evaluation.

Key words: slope, spatial variability, decomposition of likelihood function, Bayesian updating, probabilistic back analysis, reliability evaluation

CLC Number: 

  • O 319.56
[1] DENG Qi-ning, CUI Yu-long, WANG Jiong-chao, ZHENG Jun, XU Chong, . ChatGPT-assisted programming approach for three-dimensional slope stability calculation [J]. Rock and Soil Mechanics, 2025, 46(S1): 322-334.
[2] DONG Yuan, HU Ying-guo, LIU Mei-shan, LI Geng-quan, MA Chen-yang. Cumulative damage evolution mechanism in homogeneous rock high slopes induced by excavation blasting [J]. Rock and Soil Mechanics, 2025, 46(9): 2929-2942.
[3] XU Quan, HOU Jing, YANG Jian, YANG Xin-guang, NI Shao-hu, CHEN Xin. Fine stability analysis of rock slope based on synthetic rock mass technology [J]. Rock and Soil Mechanics, 2025, 46(7): 2062-2070.
[4] JIANG Yi-jian, LI Huan-huan, ZHU Da-yong, LING Dao-sheng. A linear programming model for slope considering thrust line position and limit equilibrium upper and lower bound solutions [J]. Rock and Soil Mechanics, 2025, 46(6): 1745-1754.
[5] TAO Yuan-qin, PAN Sun-jue-xu, SUN Hong-lei, NIE Yan-xia, . Parameter predictions of hardening soil model based on multivariate probability distribution [J]. Rock and Soil Mechanics, 2025, 46(5): 1392-1408.
[6] KE Wen-hai, YANG Wen-hai, LI Yuan, WU Lei, . Dynamic response of pile foundation in slope topography under SH wave [J]. Rock and Soil Mechanics, 2025, 46(5): 1545-1544.
[7] GAO Ping-hong, GAO Chen-bo, PENG Cheng-wei, LIU Fei-yu, . Model test and discrete element analysis of granite residual soil slopes under rainfall conditions [J]. Rock and Soil Mechanics, 2025, 46(5): 1632-1642.
[8] SONG Xiang-hua, XIAO Heng-lin, NI Hua-yong, TAN Yong, . Macro and micro study on the failure triggering mechanism of sandy soil slopes due to rainfall [J]. Rock and Soil Mechanics, 2025, 46(3): 969-979.
[9] YUAN Zhi-rong, JIANG Shui-hua, CHANG Zhi-lu, XIANG Hu, LIU Yu-wei, HUANG Jin-song, . Reliability analysis of slope stability considering non-uniform distribution of initial soil water content and pore water redistribution [J]. Rock and Soil Mechanics, 2025, 46(3): 1001-1012.
[10] LIU Wen-jing, DENG Hui, ZHOU Xin. Dynamic response of high steep rock slope with a double-layer ductile shear zone under earthquake action [J]. Rock and Soil Mechanics, 2025, 46(11): 3534-3548.
[11] ZHAO Fei, SHI Zhen-ming, YU Song-bo, ZHOU Yuan-yuan, LI Bo, CHEN Jian-feng, ZHANG Qing-zhao, ZHENG Hong-chao. Research progress on dynamic failure and reinforcement of stratified rock slopes [J]. Rock and Soil Mechanics, 2025, 46(11): 3585-3614.
[12] TAO Gao-liang, ZHOU Heng-jie, XIAO Heng-lin, ZHOU Hong-yu, . Mechanical and vegetative properties and anti-erosion effect of a new ecological slope protection material [J]. Rock and Soil Mechanics, 2025, 46(10): 3018-3032.
[13] DENG Zhi-ping, ZHONG Min, JIANG Shui-hua, PAN Min, HUANG Jin-song, . Efficient reliability analysis of three-dimensional slopes with nonstationary random field modeling of soil parameters [J]. Rock and Soil Mechanics, 2025, 46(10): 3243-3252.
[14] DENG Dong-ping, XU Run-dong, PENG Yi-hang, WEN Sha-sha. Limit equilibrium method based on mode of slip surface stress analysis for slope stability under the characteristics of spatial heterogeneity and anisotropy in soil strength [J]. Rock and Soil Mechanics, 2025, 46(1): 55-72.
[15] YANG Hao-tian, WU Hong-gang, WEI Hong, LAI Guo-quan, YIN Wei-jiang, . Coordinated deformation mechanism of three-tier bridge abutment slope-BFRP anchor system under rainfall conditions [J]. Rock and Soil Mechanics, 2024, 45(S1): 267-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!