›› 2018, Vol. 39 ›› Issue (8): 2814-2822.doi: 10.16285/j.rsm.2016.2552

• 基础理论与实验研究 • 上一篇    下一篇

基于冻融交界面直剪试验的冻土斜坡失稳过程研究

高 樯1, 2,温 智1,王大雁1,牛富俊1,谢艳丽3,苟廷韬3   

  1. 1. 中国科学院西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州,730000; 2. 中国科学院大学,北京 100049;3. 国网青海电力公司电力科学试验研究院,青海 西宁 810008
  • 收稿日期:2016-11-01 出版日期:2018-08-11 发布日期:2018-09-02
  • 通讯作者: 温智,男,1976年生,博士,研究员,主要从事冻土物理学与寒区工程方面的研究工作。E-mail: wenzhi@lzb.ac.cn E-mail: gaoqiang941914@163.com
  • 作者简介:高樯,男,1994年生,博士研究生,主要从事寒区工程与环境方面的研究工作。
  • 基金资助:

    国家自然科学基金项目(No. 41771073,No. 41471061,No. 41690144);中国科学院国际合作局对外合作重点项目(No. 131B62KYSB20170012);冻土工程国家重点实验室自主课题(No. SKLFSE-ZT-22)。

Study on the instability process of slopes in permafrost regions by direct shear test of freezing-thawing interface

GAO Qiang1, 2, WEN Zhi1, WANG Da-yan1, NIU Fu-jun1, XIE Yan-li3, GOU Ting-tao3   

  1. 1. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; 2. University of Chinese Academy of Science, Beijing 100049, China; 3. Test Electric Power Research Institute of State Grid Qinghai Electric Power Company, Xining, Qinghai 810008, China
  • Received:2016-11-01 Online:2018-08-11 Published:2018-09-02
  • Supported by:

    This work was supported by the National Natural Science Foundation of China(41771073, 41471061, 41690144), the Major Program of Bureau of International Cooperation of the Chinese Academy of Sciences (131B62KYSB20170012) and the Research Project of the State Key Laboratory of Frozen Soils Engineering(SKLFSE-ZT-22).

摘要: 为了探讨多年冻土区自然斜坡失稳机制,开展了不同含水率黏土、粉土、砂土的土-冰交界面直接剪切试验和相应融土的直接剪切试验。结果表明,砂土和砂土-冰冻融交界面剪切应力-变形特性主要表现为弹性变形,且剪应力存在明显峰值;粉土、黏土及相应的冻融交界面在很小的变形范围内表现为塑性变形,且剪应力无峰值。水分对砂土活动层抗剪强度影响较弱,表现为水分增高,内摩擦角小幅降低。水分对粉黏土活动层抗剪强度影响剧烈,表现为水分增高,粉黏土黏聚力急剧减小。研究发现,冻土区斜坡失稳更易发生于细颗粒粉黏土中。相对于粉土,粉土-冰冻融交界面抵抗剪切变形的能力更强,粉土斜坡潜在滑动面更易发育在冻融交界面上层附近;相对于黏土,黏土-冰冻融交界面抵抗剪切变形的能力更弱,黏土斜坡更易在冻融交界面处发生滑动。同时,细粒土斜坡极易在达到最大融化深度前提前失稳,斜坡坡度越高,失稳时间越提前。融化期活动层水分增多导致潜在滑动面黏聚力降低是细粒土冻土斜坡失稳的最主要原因,孔隙水压对冻土斜坡具有一定影响,在稳定性评价时要考虑活动层水位的影响。

关键词: 斜坡失稳, 冻融交界面, 直剪试验, 滑动面, 多年冻土

Abstract: To study the effect of mechanical property of freezing-thawing interface on slope stability, we carried out a series of direct shear tests of soils and ice-soil interfaces for saturated or nearly saturated gravel soil, silt, and clay under different normal stresses. Results show that the shear stress-deformation behaviors of gravel soil and corresponding thawing-freezing interface are all elastic deformation with clear peak shear stress. Silt, clay and corresponding thawing-freezing interfaces have plastic deformation within a small range, and there is no peak shear stress. Moisture content has little effect on shear strength of gravel soil in active layer, with little decreasing of the friction angles of gravel soil and ice-gravel soil interface with the increasing of moisture content. But for silt clay and clay soil, the effect of moisture on strength shows great decreasing of the cohesive force with the increasing of moisture content. We find that slope instability occurred more likely in the fine particle soil slope. Compared to silt soil, the corresponding thawing-freezing interface has a stronger resisting shear deformation ability, and the sliding slope will be in thawing soil layer above the interface, but the opposite the case for the clay soil. At the same time, the fine-grained soil slope tends to slide before reaching its maximum thawing depth. The higher the slope gradient, the earlier the time of instability. The main reason of slope failures in permafrost regions contributes to the lower cohesive force of sliding surface resulted from the higher moisture contents in active layers and the pore water pressure can affect the slope stability, and the influence of depth of water layer need to be taken into account.

Key words: slope failure, freezing-thawing interface, direct shear teat, failure surface, permafrost

中图分类号: 

  • TU 445

[1] 张明礼, 温智, 董建华, 王得楷, 岳国栋, 王斌, 高樯. 考虑降雨作用的多年冻土区不同地表土质 活动层水热过程差异分析[J]. 岩土力学, 2020, 41(5): 1549-1559.
[2] 柴 维, 龙志林, 旷杜敏, 陈佳敏, 闫超萍. 直剪剪切速率对钙质砂强度及变形特征的影响[J]. 岩土力学, 2019, 40(S1): 359-366.
[3] 王宏磊, 孙志忠, 刘永智, 武贵龙, . 青藏铁路含融化夹层路基热力响应监测分析[J]. 岩土力学, 2019, 40(7): 2815-2824.
[4] 李文轩, 卞士海, 李国英, 吴俊杰, . 粗粒料接触面模型及其在土石坝工程中的应用[J]. 岩土力学, 2019, 40(6): 2379-2388.
[5] 陈国庆, 唐 鹏, 李光明, 张广泽, 王 栋, . 岩桥直剪试验声发射频谱特征及主破裂前兆分析[J]. 岩土力学, 2019, 40(5): 1649-1656.
[6] 张明礼, 温 智, 董建华, 王得楷, 侯彦东, 王 斌, 郭宗云, 魏浩田, . 考虑降雨作用的气温升高对多年冻土 活动层水热影响机制[J]. 岩土力学, 2019, 40(5): 1983-1993.
[7] 周 辉, 程广坦, 朱 勇, 陈 珺, 卢景景, 崔国建, 杨聘卿, . 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860.
[8] 秦昌安, 陈国庆, 郑海君, 唐 鹏. 端部岩桥直剪破坏试验及断裂条件[J]. 岩土力学, 2019, 40(2): 642-653.
[9] 刘锋涛, 张绍发, 戴北冰, 张澄博, 林凯荣, . 边坡稳定分析刚体有限元上限法的锥规划模型[J]. 岩土力学, 2019, 40(10): 4084-4091.
[10] 崔国建,张传庆,刘立鹏,周 辉,程广坦,. 锚杆杆体–砂浆界面力学特性的剪切速率效应研究[J]. , 2018, 39(S1): 275-281.
[11] 魏匡民,陈生水,李国英,吴俊杰, . 陡峻河谷高面板坝坝体与坝基接触效应[J]. , 2018, 39(9): 3415-3424.
[12] 陈 琛,冷伍明,杨 奇,金子豪,聂如松,邱 鋆,. 混凝土桩-泥皮-砂土接触面力学特性试验研究[J]. , 2018, 39(7): 2461-2472.
[13] 赵 坤,陈卫忠,赵武胜,杨典森,宋万鹏,李 灿,马少森, . 地下工程衬砌与减震层接触面力学特性直剪试验及数值仿真[J]. , 2018, 39(7): 2662-2670.
[14] 谢 涛,罗 强,张 良,连继峰,于曰明, . 主动与被动状态下墙体侧向位移近似计算[J]. , 2018, 39(5): 1682-1690.
[15] 王永洪,张明义,刘俊伟,白晓宇, . 超孔隙水压力对低塑性黏性土桩土界面抗剪强度的影响[J]. , 2018, 39(3): 831-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!