岩土力学 ›› 2019, Vol. 40 ›› Issue (9): 3387-3396.doi: 10.16285/j.rsm.2018.1062

• 基础理论与实验研究 • 上一篇    下一篇

石墨−膨润土缓冲材料的最优配置方法

谈云志1, 2,彭帆1, 2,钱芳红1, 2,孙德安3,明华军2, 4   

  1. 1. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002;2. 三峡大学 特殊土资源化利用宜昌市重点实验室,湖北 宜昌 443002;3. 上海大学 土木工程系,上海 200444;4. 三峡大学 湖北省水电工程施工与管理重点实验室,湖北 宜昌 443002
  • 收稿日期:2018-06-19 出版日期:2019-09-10 发布日期:2019-09-04
  • 通讯作者: 明华军,男,1984年生,博士,讲师,主要从事特殊土工程特性相关的研究工作。E-mail: huajun_ming@163.com E-mail:yztan@ctgu.edu.cn
  • 作者简介:谈云志,男,1979年生,博士,教授,主要从事特殊土方面的教学与科研工作。
  • 基金资助:
    三峡库区地质灾害与教育部重点实验室开放基金(No.2018KDZ05);国家自然科学基金项目(No.51579137,No.51609126);湖北省优秀中青年科技创新团队计划项目(No.T201803);三峡大学学位论文培优基金项目资助(2019SSPY022)。

Optimal mixed scheme of graphite-bentonite buffer material

TAN Yun-zhi1, 2, PENG Fan1, 2, QIAN Fang-hong1, 2, SUN De-an3, MING Hua-jun2, 4   

  1. 1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; 2. Yichang Key Laboratory of Resource Utilization in Problematic Soils, China Three Gorges University, Yichang, Hubei 443002, China; 3. Department of Civil Engineering, Shanghai University, Shanghai 200444, China; 4. Hubei Key Laboratory of Construction and Management in Hydropower Engineering, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2018-06-19 Online:2019-09-10 Published:2019-09-04
  • Supported by:
    This work was supported by the Foundation of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(2018KDZ05), the National Natural Science Foundation of China (51579137, 51609126), the Youth Innovation Team Project of Hubei Province (T201803) and the Research Fund for Excellent Dissertation of China Three Gorges University (2019SSPY022).

摘要: 核废料封存到处置库后还会继续释放衰变热,需要加快热量向周边围岩消散,确保处置库处于安全运行状态。而提高缓冲层的导热性能成为解决该问题的突破口。将天然石墨粉掺入到钠基膨润土中,以期配置成导热速度快、隔离能力强的缓冲层回填材料。通过开展石墨?膨润土混合物的自由膨胀率、恒体积膨胀力、饱和渗透系数和导热系数等试验,研究石墨掺入率(Rg分别为5%、10%、15%、20%、30%、40%)和不同粒径(297、150、74、44 μm)对其水?力?热性能的影响规律。结果表明,掺入石墨后显著提高了膨润土的导热性能,但其提升幅度受石墨掺入率、初始含水率和初始干密度等因素影响。综合分析石墨?膨润土混合物的水?力?热性能参数,发现最优石墨掺入率处于15%~20%(质量比)范围内;相同石墨掺入率下石墨粒径为150 μm或74 μm时混合物的水?力性能最优。石墨?膨润土混合物压实后的孔隙分布显示,相同石墨掺入率下石墨粒径过大或者过小都易形成大孔隙。究其原因,天然鳞片状石墨呈扁平状,大部分膨润土颗(团)粒小于石墨,与石墨属于点?面接触方式。尤其是压实程度不高时,膨润土颗(团)粒和石墨接触面处存在大量的孔隙;而且石墨属于憎水性材料,对水分子的拖拽力弱,即使膨润土吸水膨胀后,水分也容易从石墨薄片表面处通过。

关键词: 石墨?膨润土, 粒度, 导热系数, 孔隙分布

Abstract: Nuclear waste continuously releases the decay heat after it being stored in the disposal repository. For the safe operation of the disposal repository, it is necessary to accelerate the decay heat to dissipate to surrounding rock. A good solution to solve this problem is to improve the thermal conductivity performance of buffer layers. In this study, the natural graphite powder was mixed into Na-bentonite as backfilling material, which can exert both of their advantages: fast heat conduction for graphite and isolated function of buffer materials. A series of tests, including swelling pressure, free swelling ratio, permeability and thermal conductivity, was conducted on the graphite-bentonite mixture with different graphite contents (Rg = 5%, 10%, 15%, 20%, 30%, 40%) and different granularities (297, 150, 74, 44 μm). The hydro-mechanical-thermal performance of mixtures showed that the added graphite improved the thermal conductivity significantly, and its influence degree depended on the graphite content, initial water content and dry density. Based on parameters of hydro-mechanical-thermal performance, it was found that the optimum graphite content was about 15%?20% (Wt.), and the graphite with a particle size of 150 μm or 74 μm was more beneficial for the optimum requirements. The pore-size distribution curves of the compacted mixture showed that too large or too small graphite particles were conducive to form macropores easily with the same graphite content. The reason is that as the natural graphite particles are flat and a majority of bentonite particles or agglomerates are smaller than graphite, they are formed in the point-edge contacted mode. Especially for mixtures compacted relatively loose, there are a large number of pores at the contact interface between bentonite and graphite. Moreover, graphite is hydrophobic with a low capacity for adsorbing water molecules. Hence, water can easily pass through the surface of the graphite sheet, even after the bentonite is swollen by soaking sufficiently.

Key words: graphite-bentonite, particle size, thermal conductivity, pore size distribution

中图分类号: 

  • TU42
[1] 牛庚, 邵龙潭, 孙德安, 韦昌富, 郭晓霞, 徐华. 土−水特征曲线测量过程中孔隙分布的演化规律探讨[J]. 岩土力学, 2020, 41(4): 1195-1202.
[2] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[3] 张善凯, 冷先伦, 盛谦, 李彪, 周永强, . 卢氏膨胀岩在干湿循环作用下的胀缩特性研究[J]. 岩土力学, 2019, 40(11): 4279-4288.
[4] 谢敬礼,马利科,高玉峰,曹胜飞,刘月妙. 北山花岗岩岩屑-膨润土混合材料导热性能研究[J]. , 2018, 39(8): 2823-2828.
[5] 冯上鑫,柴军瑞,许增光,覃 源,陈 玺. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J]. , 2018, 39(8): 2886-2894.
[6] 牛 庚,孙德安,韦昌富,颜荣涛,. 基于孔径分布的全风化泥岩持水曲线推算[J]. , 2018, 39(4): 1337-1345.
[7] 陈之祥,李顺群,夏锦红,张勋程,桂 超,. 基于未冻水含量的冻土热参数计算分析[J]. , 2017, 38(S2): 67-74.
[8] 曾志雄,孔令伟,田 海,李聚昭. 膨胀岩崩解特性的干湿循环效应与粒度熵表征[J]. , 2017, 38(7): 1983-1989.
[9] 叶万军,董西好,杨更社,陈 强,彭瑞奇,刘 宽. 含水率和干密度对黄土热参数影响的试验研究[J]. , 2017, 38(3): 656-662.
[10] 董西好,叶万军,杨更社,吴 迪,申艳军,刘 慧,. 温度对黄土热参数影响的试验研究[J]. , 2017, 38(10): 2888-2894.
[11] 黄启迪,蔡国庆,赵成刚, . 非饱和土干化过程微观结构演化规律研究[J]. , 2017, 38(1): 165-173.
[12] 谈云志,胡莫珍,周玮韬,左清军,汪洪星,喻 波, . 荷载-干湿循环共同作用下泥岩的压缩特性[J]. , 2016, 37(8): 2165-2171.
[13] 郁邦永 ,陈占清,吴疆宇,李 樯,丁其乐,. 饱和级配破碎泥岩压实与粒度分布分形特征试验研究[J]. , 2016, 37(7): 1887-1894.
[14] 何春木 ,邱战洪 ,陈合龙 ,熊 浩 ,朱兵见 ,刘子振,. 南方地区城市生活垃圾导热系数的试验研究[J]. , 2015, 36(4): 1057-1062.
[15] 谈云志 ,喻 波 ,刘晓玲 ,万 智 ,汪洪星,. 压实红黏土失水收缩过程的孔隙演化规律[J]. , 2015, 36(2): 369-375.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!