岩土力学 ›› 2019, Vol. 40 ›› Issue (11): 4279-4288.doi: 10.16285/j.rsm.2018.1752

• 基础理论与实验研究 • 上一篇    下一篇

卢氏膨胀岩在干湿循环作用下的胀缩特性研究

张善凯1, 2,冷先伦1, 2,盛谦1, 2,李彪3,周永强1   

  1. 1. 中国科学院武汉岩土力学研究所 湖北省环境岩土工程重点实验室,湖北 武汉 430071; 2. 中国科学院大学,北京 100049;3. 山东大学 土建与水利学院,山东 济南 250061
  • 收稿日期:2018-09-19 出版日期:2019-11-11 发布日期:2019-11-13
  • 通讯作者: 冷先伦,男,1980年生,博士,副研究员,主要从事岩石力学与工程方面的研究工作。E-mail:xlleng@whrsm.ac.cn E-mail:shankaizhang@foxmail.com
  • 作者简介:张善凯,男,1989年生,博士研究生,主要从事边坡工程及膨胀岩膨胀特性方面的研究工作
  • 基金资助:
    国家重点研发计划项目(No.2018YFC0809400,No.2017YFF0108705,No.2017YFF0108706);国家自然科学基金资助项目(No.11472292,No.51679232);陕西省交通运输厅2016年度交通科研项目(16-18K)。

Swelling and shrinkage characteristics study of Lushi expansive rock under dry and wet circulation

ZHANG Shan-kai1, 2, LENG Xian-lun1, 2, SHENG Qian1, 2, LI Biao3, ZHOU Yong-qiang1   

  1. 1. Hubei Key Laboratory of Geo-Environmental Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China
  • Received:2018-09-19 Online:2019-11-11 Published:2019-11-13
  • Supported by:
    This work was supported by the National Key R&D Program of China(2018YFC0809400,2017YFF0108705,2017YFF0108706), the National Natural Science Foundation of China(11472292,51679232) and the Department of Transport of Shaanxi Province 2016 Transportation Research Project(16-18K).

摘要: 为研究卢氏膨胀岩的胀缩特性,开展了干湿循环作用下膨胀岩的胀缩特性试验研究,并在膨胀岩经历干湿循环后利用扫描电子显微镜(SEM)和氮吸附试验(NA),从微观的角度分析了膨胀岩吸水膨胀失水收缩的现象,并解释了胀缩特性改变的原因。研究结果表明:卢氏膨胀岩膨胀率随干湿循环次数增加而增大,绝对膨胀率增加25%;收缩曲线出现明显的“收缩拐点”,一般在收缩总时间的20%时出现,这时膨胀岩失水状态由自由水的散失转变为结合水的散失;在膨胀岩第1次胀缩过程中出现裂缝,裂缝为贯通状;在之后的胀缩过程中出现的裂缝较浅且随干湿循环次数的增加裂缝发育逐渐稳定;在干湿循环次数达到6~8次后,卢氏膨胀岩胀缩率达到稳定值,绝对膨胀率稳定在17%,绝对收缩率稳定在9%;微观方面随干湿循环次数的增加,膨胀岩的微观结构中黏土颗粒聚集形态由紧密状态转变为松散状态。此外,试样的孔隙特征随干湿循环次数的增加表现出孔隙总体积逐渐增大、孔径逐渐减小、比表面积逐渐增大的规律。

关键词: 膨胀岩, 干湿循环, 胀缩特性, 微观结构, 孔隙分布

Abstract: To investigate the expansion and shrinkage characteristics of the Lushi expansion rock, experimental study on the expansive rock expansion and contraction characteristics under dry-wet cycle was carried out. After experiencing dry and wet cycles, the expansive rock was analyzed by scanning electron microscopy (SEM) and nitrogen adsorption experiment (NA). The phenomenon of swelling and water shrinkage of expansive rock was analyzed from the microscopic point of view, and the reason for the change of expansion and contraction characteristics was explained. The results show that the expansion rate of expansive rock increases with the increase of dry and wet circulation, and the absolute expansion rate increases by 25%. The contraction curve shows an evident contraction inflection point, which usually occurs at 20% of the total shrinkage time. At this time, the water loss state of the expansion rock changes from the free water loss to the combined water loss. Cracks appear during the first expansion and contraction of the expansive rock, which are transfixion. In the later expansion and contraction process, the cracks appeared shallower gradually stabilized with the increase of dry and wet circulation. After the number of cycles reached 6-8, the expansion and shrinkage rate of Lushi expansion rock reached a stable value, with the absolute expansion rate stable at 17% and the absolute contraction rate stable at 9%. As the number of dry and wet cycles increased, the aggregation of clay particles in the microstructure of expansive rock changed from compact state to loosen. In addition, the pore characteristics of the sample show that total pore volume gradually increases, the pore diameter gradually decreases, and the specific surface area gradually increases with the increase of the number of dry and wet cycles.

Key words: swelling rock, wetting-drying cycle, swell-shrink characteristic, microstructure, pore distribution

中图分类号: 

  • TU 45
[1] 赵怡晴, 吴常贵, 金爱兵, 孙浩, . 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240.
[2] 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910.
[3] 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122.
[4] 牛庚, 邵龙潭, 孙德安, 韦昌富, 郭晓霞, 徐华. 土−水特征曲线测量过程中孔隙分布的演化规律探讨[J]. 岩土力学, 2020, 41(4): 1195-1202.
[5] 杜宇翔, 盛谦, 王帅, 付晓东, 罗红星, 田明, 王立纬, 梅鸿儒. 昔格达组半成岩微观结构与力学性质研究[J]. 岩土力学, 2020, 41(4): 1247-1258.
[6] 张宗堂, 高文华, 张志敏, 唐骁宇, 邬俊, . 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 2020, 41(3): 877-885.
[7] 张善凯, 冷先伦, 盛谦, . 卢氏膨胀岩湿胀软化特性研究[J]. 岩土力学, 2020, 41(2): 561-570.
[8] 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686.
[9] 雷华阳, 胡垚, 雷尚华, 祁子洋, 许英刚, . 增压式真空预压加固吹填超软土微观结构特征分析[J]. 岩土力学, 2019, 40(S1): 32-40.
[10] 谢辉辉, 许振浩, 刘清秉, 胡桂阳, . 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(S1): 245-252.
[11] 刘祖强, 罗红明, 郑敏, 施云江, . 南水北调渠坡膨胀土胀缩特性及变形模型研究[J]. 岩土力学, 2019, 40(S1): 409-414.
[12] 谈云志, 彭帆, 钱芳红, 孙德安, 明华军, . 石墨−膨润土缓冲材料的最优配置方法[J]. 岩土力学, 2019, 40(9): 3387-3396.
[13] 韩钢, 周辉, 陈建林, 张传庆, 高阳, 宋桂红, 洪望兵, . 白鹤滩水电站层间错动带工程地质特性[J]. 岩土力学, 2019, 40(9): 3559-3568.
[14] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[15] 任克彬, 王 博, 李新明, 尹 松, . 毛细水干湿循环作用下土遗址的强度特性 与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!