岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 281-296.doi: 10.16285/j.rsm.2018.1808

• 岩土工程研究 • 上一篇    下一篇

考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析

张治国1, 2, 3,李胜楠1,张成平2,王志伟3   

  1. 1. 上海理工大学 环境与建筑学院,上海 200093;2. 北京交通大学 城市地下工程教育部重点实验室,北京 100044; 3. 中国铁道科学研究院铁道建筑研究所 高速铁路轨道技术国家重点实验室,北京 100081
  • 收稿日期:2018-09-26 出版日期:2019-08-01 发布日期:2019-08-16
  • 作者简介:张治国,男,1978年生,博士,博士后,副教授,主要从事软土地下工程等方面的教学与研究工作
  • 基金资助:
    国家自然科学基金重点项目(No.51738010);国家自然科学基金面上项目(No.41772331);城市地下工程教育部重点实验室基金项目(No.TUE2017-04);高速铁路轨道技术国家重点实验室课题(No.2018YJ181)

Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall

ZHANG Zhi-guo1, 2, 3, LI Sheng-nan1, ZHANG Cheng-ping2, WANG Zhi-wei3   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China; 3. State Key Laboratory for Track Technology of High-speed Railway, Railway Engineering Research Institute, China Academy of Railway Sciences, Beijing 100081, China
  • Received:2018-09-26 Online:2019-08-01 Published:2019-08-16
  • Supported by:
    This work was supported by the Key Program for National Natural Science Foundation of China (51738010), the General Program for National Natural Science Foundation of China (41772331), the Open Project of Key Laboratory of Urban Underground Engineering of Ministry of Education(TUE2017-04), and the Project Program of State Key Laboratory for Track Technology of High-speed Railway (2018YJ181).

摘要: 盾构隧道施工时遭遇地下水位急剧变化会明显增大施工风险,既有成果较少考虑地下水位升降给盾构隧道施工带来的影响,也较少针对隧道衬砌本身变形和应力进行分析。在考虑盾构隧道施工时地下水位变化的情况下引入隧道洞周的非均匀收敛变形模式,采用复变函数法理论,提出地下水位升降影响下盾构隧道开挖引起的周围地层、衬砌变形和应力的计算方法。将理论解析结果与数值模拟结果进行对比,验证了所提出方法的可靠性,并针对衬砌厚度、隧道半径、地下水位深度等参数进行了敏感性分析。研究结果表明,衬砌的径向位移形态基本呈现“苹果把”朝上的“苹果”形;随着地下水位的下降径向位移由“鸭蛋”形逐渐向“苹果”形过渡,且“苹果”形越来越明显;衬砌的环向位移基本形态呈倾斜的“苹果”形,随着地下水位的下降倾斜的“苹果”形范围逐渐变大;径向应力的分布在衬砌厚度、隧道半径的影响下呈现出相同的增减变化规律,且随着上述两个参数逐渐增大,径向应力分布由水平放置的“鸭蛋”逐渐变化成水平放置的“ ”字形,随着地下水位的下降径向应力形态逐渐向中心收缩;衬砌环向应力随着衬砌厚度的增大,应力略微减小,随着隧道半径的增大衬砌环向应力明显减小,随着地下水位的下降环向应力分布形态由竖立放置的“鸭蛋”形逐渐变化为竖立放置的“8”字形;衬砌切向应力在衬砌厚度、隧道半径的影响下呈现相同的增减变化规律,且切向应力分布呈现“苹果把”朝下的“苹果”形。研究成果可为地下水位变化明显的盾构施工控制提供参考。

关键词: 软土盾构隧道, 地下水位升降, 非均匀收敛变形, 地表沉降, 衬砌响应, 复变函数理论

Abstract: A high risk will be raised when the groundwater level changes dramatically during the construction of shield tunnel. However, the impact of fluctuation of groundwater table is seldom considered in the construction of shield excavation in current studies. Besides, the deformation and stress analysis of tunnel lining are paid even less attention. The non-uniform convergence deformation at the periphery of the tunnel cavity is introduced into this paper, considering the fluctuation of groundwater level when the shield tunnel is being constructed. The complex functions are applied in calculating the deformation of ground and lining and stress caused by shield tunnel excavation under the influence of the variation in groundwater table. The presented method is proved to be reliable by comparing the theoretical analysis results with the numerical simulation results. In addition, sensitivity analysis of parameters such as the groundwater level depth, thickness of lining, radius of tunnel is carried out. The results show that the radial displacement of the lining presents a stem-upwards "apple" shape. When the groundwater level decreases, the radial displacement gradually transforms from "duck egg" shape to "apple" shape that tends to be more and more obvious. The circumferential displacement of the lining likes an inclined "apple". With a decline of groundwater level, the range of the oblique "apple" expands. Under the influence of lining thickness, tunnel radius etc., the distribution of radial stress shows the same variation rules as mentioned above. With the increase in these two parameters, the distribution of radial stress gradually changes from the horizontal “duck egg” to “ ” shape. As the groundwater level drops, the shape of radial stress shrinks towards the center. The circumferential stress of the lining decreases slightly with an increase in thickness of the lining. While it decreases obviously with an increase in the tunnel radius. As the groundwater level drops, the distribution of circumferential stress gradually changes from the vertically placed "duck egg" shape to the "8" shape. The tangential stress of the lining shows the same variation rules under the influence of lining thickness and the tunnel radius. The distribution of tangential stress shows a stem-downwards "apple" shape. The research results can give a reference to the shield construction when the groundwater level changes obviously.

Key words: shield tunnel in soft clays, groundwater levels rise and fall, non-uniform convergence deformation, surface settlement, lining response, complex function theory

中图分类号: 

  • U452
[1] 杨公标, 张成平, 闵 博, 蔡 义, . 浅埋含空洞地层圆形隧道开挖引起的位移 复变函数弹性解[J]. 岩土力学, 2018, 39(S2): 25-36.
[2] 胡之锋,陈 健,邱岳峰,李健斌,周兴涛, . 挡墙水平变位诱发地表沉降的显式解析解[J]. , 2018, 39(11): 4165-4175.
[3] 魏 纲,林 雄,金 睿,丁 智,. 双线盾构施工时邻近地下管线安全性判别[J]. , 2018, 39(1): 181-190.
[4] 李银平,孔庆聪,施锡林,李 硕,杨博进,杨春和,. 盐穴地下储库地表沉降的黏弹模型及应用[J]. , 2017, 38(7): 2049-2058.
[5] 魏 纲,周杨侃. 随机介质理论预测近距离平行盾构引起的地表沉降[J]. , 2016, 37(S2): 113-119.
[6] 朱才辉,李 宁. 隧道施工诱发地表沉降估算方法及其规律分析[J]. , 2016, 37(S2): 533-542.
[7] 沈路遥,钱建固,张戎泽,. 挡墙水平变位诱发地表沉降的简化解析解[J]. , 2016, 37(8): 2293-2298.
[8] 顾剑波 ,钱建固 , . 任意柔性挡墙变位诱发地表沉降的解析理论预测[J]. , 2015, 36(S1): 465-470.
[9] 蔡海兵 ,彭立敏 ,郑腾龙,. 隧道水平冻结壁强制解冻期地表沉降的预测方法[J]. , 2015, 36(12): 3516-3522.
[10] 张强勇 ,王保群 ,向 文,. 盐岩地下储气库风险评价层次分析模型及应用[J]. , 2014, 35(8): 2299-2306.
[11] 徐长节 ,成守泽 ,蔡袁强 ,罗志元,. 非对称开挖条件下基坑变形性状分析[J]. , 2014, 35(7): 1929-1934.
[12] 杨泽飞,魏 纲,林磊磊,张世民. 盾构法隧道施工工后横向地表总沉降研究[J]. , 2013, 34(S2): 338-343.
[13] 侯永茂 ,郑宜枫 ,杨国祥 ,葛修润 ,邱裕华 . 超大直径土压平衡盾构施工对环境影响的现场监测研究[J]. , 2013, 34(1): 235-242.
[14] 王 芳 ,贺少辉 ,刘 军 ,曹瑞琅 . 盾构隧道结合洞桩法修建地铁车站地表沉降控制标准分析[J]. , 2012, 33(S2): 289-296.
[15] 滕 丽 ,张 桓. 盾构穿越砂卵石地层地表沉降特征细宏观分析[J]. , 2012, 33(4): 1141-1150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!