岩土力学 ›› 2020, Vol. 41 ›› Issue (1): 95-102.doi: 10.16285/j.rsm.2018.2346

• 基础理论与实验研究 • 上一篇    下一篇

大位移条件下水平受荷单桩的简明弹塑性计算方法

邓涛1, 2,林聪煜1, 2,柳志鹏1, 2,黄明1, 2,陈文菁1, 2   

  1. 1. 福州大学 土木工程学院,福建 福州 350108;2. 福建省土木工程多灾害防治重点实验室,福建 福州 350108
  • 收稿日期:2018-12-27 修回日期:2019-05-05 出版日期:2020-01-13 发布日期:2020-01-05
  • 通讯作者: 黄明,男,1983年生,博士,教授,主要研究方向为岩土工程防灾减灾。E-mail: huangming05@163.com E-mail:dengtao0911@163.com
  • 作者简介:邓涛,男,1972年生,博士,教授,主要从事岩土和地下工程方面的科研和教学工作
  • 基金资助:
    国家自然科学基金(No. 41672290);福建省自然科学基金(No. 2016J01189)

A simplified elastoplastic method for laterally loaded single pile with large displacement

DENG Tao1, 2, LIN Cong-yu1, 2, LIU Zhi-peng1, 2, HUANG Ming1, 2, CHEN Wen-jing1, 2   

  1. 1. College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; 2. Fujian Provincial Key Laboratory on Multi-Disasters Prevention and Mitigation in Civil Engineering, Fuzhou, Fujian 350108, China
  • Received:2018-12-27 Revised:2019-05-05 Online:2020-01-13 Published:2020-01-05
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41672290) and the Natural Science Foundation of Fujian Province (2016J01189).

摘要: 软土地层中当桩顶水平荷载较大时,采用传统m法计算容易低估桩身弯矩与挠曲变形,有必要针对该问题提出相关计算方法。将地基土体简化为理想弹塑性体,假定桩身某一深度处存在土体的弹塑性变形临界点,临界点以上的土体进入塑性变形状态,而临界点以下的土体仍处于弹性变形状态,分段建立桩身挠曲微分控制方程,得到水平受荷单桩简明弹塑性计算方法。现场单桩实测和参数敏感性分析结果表明:采用简明弹塑性计算方法得到的桩身最大弯矩较传统m法计算精度提高38.1%;桩身最大水平位移计算精度提高22.3%;桩顶边界条件对桩身水平位移与弯矩沿桩身的分布规律影响显著;桩身最大弯矩和水平位移对土体的极限抗力系数及其形状参数较敏感,设计中宜按下限值选取。

关键词: 桩基工程, 水平受荷桩, 大位移, 简明弹塑性计算方法, m法

Abstract: When the top of a pile in soft ground is subjected to a large horizontal load, the traditional m method would underestimate the bending moment and deformation of the pile element. Therefore, it is necessary to propose relevant calculation methods for this problem. Simplifying the soft ground to an ideal elastoplastic body, and assume that there exists a critical point at a certain depth of the ground where the soil mass above the critical point behaves plastically and the soil mass below the point behaves elastically. The deflection differential control equation of the pile is established and a simplified elastoplastic calculation method for the horizontally loaded single pile is proposed. The results of field measurements and parametric study show that the maximum bending moment calculated by the simplified elastoplastic calculation method is 38.1% more accurate to field measurement in comparison with the traditional m method, and the calculation accuracy of the maximum horizontal displacement of the pile is improved by 22.3%. It indicates that the boundary conditions at pile top have significant impact on the distribution of lateral deflection and bending moment along the pile. Moreover, parameters of soil limit resistance and soil shape have remarkable influence on the maximum bending moment and lateral deflection and it is recommended to choose the lower values in pile design.

Key words: pile foundations, laterally loaded pile, large displacement, simplified elastoplastic calculation method, m-method

中图分类号: 

  • TU 473
[1] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[2] 赵强, 焦玉勇, 张秀丽, 谢壁婷, 王龙, 黄刚海, . 基于显式时间积分的球颗粒DDA计算方法[J]. 岩土力学, 2019, 40(11): 4515-4522.
[3] 毛坚强,徐 骏,杨 磊,. 滑体段采用m法模型的抗滑桩计算方法[J]. , 2018, 39(4): 1197-1202.
[4] 杨明辉,冯超博,赵明华,罗 宏. 考虑坡度效应的水平受荷桩应变楔计算方法[J]. , 2018, 39(4): 1271-1280.
[5] 何建乔,魏厚振,孟庆山,王新志,韦昌富,. 大位移剪切下钙质砂破碎演化特性[J]. , 2018, 39(1): 165-172.
[6] 荣雪宁,徐日庆,冯苏阳,仇 涛,. 基于拉格朗日乘数法的大弯矩水平受荷桩研究[J]. , 2017, 38(9): 2605-2612.
[7] 李洪江,刘松玉,童立元, . 基于应力增量的单桩p-y曲线分析方法[J]. , 2017, 38(10): 2916-2922.
[8] 吕彩忠,孙亚丽. 软岩洞室最优支护的广义SMP准则解与对比研究[J]. , 2016, 37(7): 1956-1962.
[9] 杨晓峰,张陈蓉,黄茂松,袁聚云,. 砂土中桩土侧向相互作用的应变楔模型修正[J]. , 2016, 37(10): 2877-2885.
[10] 施 峰 ,郝世龙 , . PHC管桩水平承载力试验研究[J]. , 2015, 36(S2): 617-622.
[11] 杨晓峰 ,张陈蓉 ,袁聚云 , . 砂土中考虑冲刷的水平受荷桩等效应变楔方法[J]. , 2015, 36(10): 2946-2950.
[12] 蒋凯乐 ,李云鹏 ,张如满 ,张琦伟 . 塑性混凝土防渗墙土反力系数反演[J]. , 2012, 33(S2): 389-395.
[13] 任连伟 ,柴华彬 . 高喷插芯组合桩承载特性的影响因素分析[J]. , 2012, 33(S1): 183-192.
[14] 王国粹,杨 敏. 砂土中水平受荷桩非线性分析[J]. , 2011, 32(S2): 261-267.
[15] 张 玲,赵明华,赵 衡. 双层地基水平受荷桩受力变形分析[J]. , 2011, 32(S2): 302-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!