岩土力学 ›› 2020, Vol. 41 ›› Issue (3): 1029-1038.doi: 10.16285/j.rsm.2019.0702

• 岩土工程研究 • 上一篇    下一篇

基于流固耦合理论水下隧道冻结壁厚度优化研究

郑立夫1,高永涛1,周喻1,田书广2   

  1. 1. 北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083;2. 中铁十六局集团有限公司,北京 100018
  • 收稿日期:2019-04-18 修回日期:2019-07-30 出版日期:2020-03-11 发布日期:2020-05-26
  • 通讯作者: 高永涛,男,1962年生,博士,教授,博士生导师,主要从事岩土工程和采矿工程方面的教学和研究工作。E-mail: 13901039214@163.com E-mail: lifuzhengustb@126.com
  • 作者简介:郑立夫,男,1992年生,博士研究生,主要从事岩土工程和隧道工程方面的研究工作。
  • 基金资助:
    国家自然科学基金(No.51674015);国家青年科学基金(No.51504016);中央高校基本科研业务费专项资金项目(No.FRF-TP-18-016A3)。

Research on optimization of frozen wall thickness of underwater tunnel based on fluid-solid coupling theory

ZHENG Li-fu1, GAO Yong-tao1, ZHOU Yu1, TIAN Shu-guang2   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China; 2. China Railway 16th Bureau Group Co., Ltd., Beijing 100018, China
  • Received:2019-04-18 Revised:2019-07-30 Online:2020-03-11 Published:2020-05-26
  • Supported by:
    This work was supported by the National Science Foundation of China (51674015), the National Science Foundation for Young Scholars (51504016) and the Fundamental Research Funds for the Central Universities (FRF-TP-18-016A3).

摘要: 水下隧道对冻结壁厚度设计有特殊要求,针对珠机城际轨道交通项目下穿马骝洲水道段联络通道冻结壁设计改进问题,基于流固耦合分析理论,利用有限差分数值计算方法对水下隧道冻结壁稳定性进行研究,通过对不同厚度冻结壁响应情况的对比研究,实现对于冻结壁厚度的优化设计。研究表明:相较无渗流模型,流固耦合模型冻结壁应力分布规律相同,但整体量值增大明显,水的作用不可忽略;水的存在使冻结壁受力趋于“均匀”,应力集中现象缓解,但高剪应力区范围扩大,使其剪切破坏风险加大,且冻结壁受力形式有从受压向受拉改变的趋势,对结构稳定不利;冻结壁在流固耦合作用下变形加剧,且随厚度减小而愈发显著,模型厚度达到2.0 m以上时变形基本稳定;流固耦合模型塑性区多集中于两侧拱脚区域, 3.0 m和2.5 m模型整体完好,2.0 m模型两侧拱脚出现相向发展塑性区,1.5 m模型塑性区厚度接近贯穿,1.0 m冻结壁拱脚已形成明显贯穿破坏;综合选定2.5 m为冻结壁改进厚度,成果直接应用于4#联络通道冻结法施工,经现场监测表明该优化方案有效、可行,对类似工程冻结壁厚度设计具有重要的推广应用价值。

关键词: 水下隧道, 流固耦合理论, 冻结壁, 厚度优化

Abstract: The design of underwater tunnel has special requirements for the thickness of the frozen wall. To improve the frozen wall design of the contact channel in the Maliuzhou waterway section of the Zhuji Intercity Rail Transit Project, based on the fluid-solid coupling theory, the finite difference method is adopted to analyze the stability of the underwater tunnel numerically. By simulating underwater tunnel with different frozen wall thickness, the responses of underwater tunnel stability to the thickness of frozen wall are discussed and the optimizaitons of frozen wall ticknesses are done. The results of simulation show: compared with the non-permeability model, the fluid-solid coupling model has the same distribution of stress on the frozen wall, but the overall values are obvious larger, which means the effect of water cannot be ignored. Due to the existence of water, the frozen wall tends to be “homogeneous” and the stress concentration phenomenon is alleviated, but the distribution range of high shear stress is expanded, which increases the risk of shear damage, and the frozen wall is changed to be under the tension from the pressure, which decreases structural stability. The deformation of the frozen wall is intensified under influence of the fluid-solid coupling and increase with the decreases of the thickness until the thickness of the model reaches 2.0 m or more, where the deformation of the frozen wall is basically stable. The plastic zones of the fluid-solid coupling models mostly exist at the arched areas on both sides, no plastic zone is formed in the models with 3.0 m and 2.5 m thickness, the plastics are formed in the opposite sides of the model with 2.0 m thickness, the plastic zone is almost going through in the models with 1.5 m thickness, the damage zone is formed obviously at frozen wall arch of the model with 1.0 m thickness. The thickness of 2.5 m is selected as the optimized thickness of the frozen wall. This optimized thickness is directly applied to the design of the No.4 communication channel, which is constructed by a freezing method. Through the on-site monitoring test, the validity and the effectiveness of the optimization scheme are verified, which means this optimization scheme has essential promotion and application value for the design of frozen wall thickness in similar projects.

Key words: underwater tunnel, fluid-solid coupling theory, frozen wall, thickness optimization

中图分类号: 

  • U 459.5
[1] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[2] 刘阳辉, 胡向东, . 卸载状态下立井冻结壁的力学分析[J]. 岩土力学, 2018, 39(S2): 344-350.
[3] 彭祖昭,封 坤,肖明清,何 川,蒋 超,陈怀伟,. 基于压力拱理论的水下隧道合理覆岩厚度研究[J]. , 2018, 39(7): 2609-2616.
[4] 任建喜,孙杰龙,张 琨,王 江,王东星. 富水砂层斜井冻结壁力学特性及温度场研究[J]. , 2017, 38(5): 1405-1412.
[5] 管华栋,周晓敏. 基于围岩相互作用的冻结壁弹塑性分析对比研究[J]. , 2017, 38(3): 649-655.
[6] 曹雪叶,赵均海,张常光. 基于统一强度理论的冻结壁弹塑性应力分析[J]. , 2017, 38(3): 769-774.
[7] 石荣剑,岳丰田,张 勇,陆 路, . 盾构地中对接冻结加固模型试验(Ⅰ) ——冻结过程中地层冻结温度场的分布特征[J]. , 2017, 38(2): 368-376.
[8] 蔡海兵 ,彭立敏 ,郑腾龙,. 隧道水平冻结壁强制解冻期地表沉降的预测方法[J]. , 2015, 36(12): 3516-3522.
[9] 周晓敏 , 管华栋 , 罗晓青 , 王安保 . 竖井圆形冻结壁弹性设计理论的对比研究[J]. , 2013, 34(S1): 247-251.
[10] 蔚立元 ,陈晓鹏 ,韩立军 ,王迎超 . 基于复变函数方法的水下隧道围岩弹性分析[J]. , 2012, 33(S2): 345-351.
[11] 陈 宇,张庆贺,朱继文,姚海明. 双圆盾构穿越下立交结构的流-固耦合数值模拟[J]. , 2010, 31(6): 1950-1955.
[12] 姜耀东,赵毅鑫,周 罡,孙 磊,秦 玮. 广州地铁超长水平冻结多参量监测分析[J]. , 2010, 31(1): 158-164.
[13] 刘元雪 ,蒋树屏 ,谢 锋 ,王培勇, . 重庆市两江隧道合理覆盖层厚度研究[J]. , 2006, 27(S2): 709-713.
[14] 汪仁和 ,李栋伟 ,王秀喜,. 改进的西原模型及其在ADINA程序中的实现[J]. , 2006, 27(11): 1954-1958.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭 鹏,宋汉周,郭张军. 基于数据融合理论的某坝段地下水宏观动态研究[J]. , 2009, 30(12): 3820 -3824 .
[2] 陈绍杰,郭惟嘉,杨永杰. 煤岩蠕变模型与破坏特征试验研究[J]. , 2009, 30(9): 2595 -2598 .
[3] 林刚,徐长节,蔡袁强. 不平衡堆载作用下深基坑开挖支护结构性状研究[J]. , 2010, 31(8): 2592 -2598 .
[4] 穆彦虎,马 巍,孙志忠,刘永智. 青藏铁路块石路基冷却降温效果对比分析[J]. , 2010, 31(S1): 284 -292 .
[5] 赵炼恒,罗 强,李 亮,杨 峰,但汉成. 层状岩体边坡动态稳定性拟静力上限分析[J]. , 2010, 31(11): 3627 -3634 .
[6] 李荣建,于玉贞,吕 禾,李广信. 饱和砂土地基上抗滑桩加固边坡的动力离心模型试验研究[J]. , 2009, 30(4): 897 -902 .
[7] 肖成志,孙建诚,李雨润,刘晓朋. 三维土工网垫植草护坡防坡面径流冲刷的机制分析[J]. , 2011, 32(2): 453 -458 .
[8] 周万欢 ,殷建华. 上覆压力和剪胀作用下土钉抗拔的有限元模拟[J]. , 2011, 32(S1): 691 -0696 .
[9] 陈青生 ,高广运 ,何俊锋. 地震荷载不规则性对砂土震陷的影响[J]. , 2011, 32(12): 3713 -3720 .
[10] 卢海峰 ,刘泉声 ,陈从新. 反倾岩质边坡悬臂梁极限平衡模型的改进[J]. , 2012, 33(2): 577 -584 .