›› 2017, Vol. 38 ›› Issue (5): 1405-1412.doi: 10.16285/j.rsm.2017.05.023

• 岩土工程研究 • 上一篇    下一篇

富水砂层斜井冻结壁力学特性及温度场研究

任建喜,孙杰龙,张 琨,王 江,王东星   

  1. 西安科技大学 建筑与土木工程学院,陕西 西安 710054
  • 收稿日期:2016-04-15 出版日期:2017-05-11 发布日期:2018-06-05
  • 作者简介:任建喜,男,1968年生,博士后,教授,主要从事岩土损伤力学、岩土力学数值方法等方面的研究工作。
  • 基金资助:

    陕西省科学研究发展计划项目资助(No. 2016XT-04,No. 2016XT-25,No. 2015XT-15),陕西省教育厅科研计划项目资助(No. 16JK1512)。

Mechanical properties and temperature field of inclined frozen wall in water-rich sand stratum

REN Jian-xi, SUN Jie-long, ZHANG Kun, WANG Jiang, WANG Dong-xing   

  1. College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China
  • Received:2016-04-15 Online:2017-05-11 Published:2018-06-05
  • Supported by:

    This work was supported by the Scientific Research and Development Project of Shaanxi Province (2016XT-04, 2016XT-25, 2015XT-15); the Scientific Research Project of Shaanxi Province Education(16JK1512).

摘要: 研究富水砂层斜井冻结壁力学特性及温度场分布规律,可为解决斜井冻结法凿井穿越富水砂层技术难点提供可靠依据。以陕北某斜井冻结法凿井工程为研究背景,通过室内物理力学试验、现场实测及有限元数值模拟相结合的方法,研究了冻结状态下砂土的热物理及力学特性,分析了斜井冻结法凿井期间冻结壁受力机制,深入分析斜井冻融过程中冻结压力变化规律及原因,对测温孔与冻结壁径向温度实测与数值模拟结果进行了对比分析。研究结果表明,随着温度降低,冻结砂土导热系数呈现出先增大后减小的趋势,且冻结温度对冻结砂土的内摩擦角影响较大;冻结温度、井筒埋深和地下水对冻结压力的影响较大;混凝土水化热对冻结壁的影响范围约为460~475 mm。研究结果可为富水砂层地区斜井冻结法凿井的优化设计和安全稳定性研究提供依据。

关键词: 富水砂层, 斜井冻结壁, 热物理及力学特性, 冻融过程, 冻结压力, 温度场

Abstract: Mechanical properties and temperature field of inclined frozen wall provide reliable basis for solving technical difficulties of inclined frozen mine construction in the water-rich sand stratum. Taken the inclined frozen engineering in northern Shaanxi as an example, thermo-physical and mechanical properties of frozen sand were studied by the combination of laboratory tests, field measurement and the finite element simulation. The variation and causes of freezing pressure in inclined frozen sand well were analyzed and the measured temperatures were compared with numerical results obtained in thermometer holes. It is found that the thermal conductivity of frozen sand initially increases and then decreases with the decrease of temperature, and the internal friction angle of frozen sand was greatly influenced by freezing temperature. The freezing pressure was significantly affected by the freezing temperature, shaft depth and groundwater. The effect of the concrete hydration heating on the frozen wall was in the range of 460 and 475 mm. The results provide evidence for the optimization design and stability of inclined mine construction by frozen in the water-rich sand stratum.

Key words: water-rich sand stratum, inclined frozen wall, thermo-physical and mechanical properties, frozen-thaw process, frozen pressure, temperature field

中图分类号: 

  • TD 262

[1] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[2] 周祥运, 孙德安, 罗汀. 核废料处置库近场温度半解析研究[J]. 岩土力学, 2020, 41(S1): 246-254.
[3] 刘波, 马永君, 盛海龙, 常雅儒, 于俊杰, 贾帅龙, . 白垩系红砂岩冻结融化后的力学性质试验研究[J]. 岩土力学, 2019, 40(S1): 161-171.
[4] 刘伟俊, 张晋勋, 单仁亮, 杨昊, 梁辰, . 渗流作用下北京砂卵石地层多排管局部 水平冻结体温度场试验[J]. 岩土力学, 2019, 40(9): 3425-3434.
[5] 张沛然,黄雪峰,杨校辉,刘自龙,朱中华,. 盐渍土水-热场耦合效应与盐胀变形试验[J]. , 2018, 39(5): 1619-1624.
[6] 张玉伟,谢永利,李又云,赖金星,. 基于温度场时空分布特征的寒区隧道冻胀模型[J]. , 2018, 39(5): 1625-1632.
[7] 石荣剑,岳丰田,张 勇,陆 路, . 盾构地中对接冻结加固模型试验(Ⅰ) ——冻结过程中地层冻结温度场的分布特征[J]. , 2017, 38(2): 368-376.
[8] 舒 才,王宏图,施 峰,胡国忠,. 基于两能态吸附热理论的煤层瓦斯流动热-流-固多场耦合模型[J]. , 2017, 38(11): 3197-3204.
[9] 申艳军,杨更社,荣腾龙,刘 慧. 低温环境下含表面裂隙硬岩温度场及冻胀演化过程分析[J]. , 2016, 37(S1): 521-529.
[10] 田宝柱 ,刘善军 ,张艳博 ,梁 鹏 ,刘祥鑫 , . 花岗岩巷道岩爆过程红外辐射时空演化特征室内模拟试验研究[J]. , 2016, 37(3): 711-718.
[11] 薛娈鸾 , . 裂隙岩体不稳定温度场的复合单元算法研究[J]. , 2015, 36(7): 2088-2094.
[12] 黄 旭 ,孔纲强 ,刘汉龙 ,吴宏伟,. 循环温度场作用下PCC能量桩热力学特性模型试验研究[J]. , 2015, 36(3): 667-673.
[13] 胡 俊 ,杨 平,. 大直径杯型冻土壁温度场数值分析[J]. , 2015, 36(2): 523-531.
[14] 吴志伟 ,宋汉周,. 基于流-热耦合模型的土石坝渗流热监测研究[J]. , 2015, 36(2): 584-590.
[15] 马茂艳 ,程 桦 ,荣传新,. 基于改进西原模型的深井冻结压力数值计算分析[J]. , 2015, 36(10): 3015-3022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!