岩土力学 ›› 2020, Vol. 41 ›› Issue (5): 1750-1760.doi: 10.16285/j.rsm.2019.0813

• 数值分析 • 上一篇    下一篇

温度作用下CT三维重建煤体微观 结构的渗流和变形模拟

王刚1, 2,秦相杰2,江成浩2,张振宇3   

  1. 1. 山东科技大学 矿山灾害预防控制省部共建国家重点实验室培育基地,山东 青岛 266590; 2. 山东科技大学 安全与环境工程学院,山东 青岛 266590;3. 重庆大学 资源及环境科学学院,重庆 400044
  • 收稿日期:2019-05-06 修回日期:2019-09-11 出版日期:2020-05-11 发布日期:2020-07-08
  • 作者简介:王刚,男,1984年生,工学博士,教授,博士生导师,主要从事矿山通防灾害预测与防治方面的教学与研究工作
  • 基金资助:
    国家重点研发计划资助项目(No. 2017YFC0805201);国家自然科学基金资助项目(No. 51674158;No. 51934004;No. 51974176);山东省自然科学基金重大基础研究项目(No. ZR2018ZA0602);泰山学者工程专项经费资助项目(No.TS20190935)。

Simulations of temperature effects on seepage and deformation of coal microstructure in 3D CT reconstructions

WANG Gang1, 2, QIN Xiang-jie2, JIANG Cheng-hao2, ZHANG Zhen-yu3   

  1. 1. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 3. College of Resources and Environmental Sciences, Chongqing University, Chongqing 400044, China
  • Received:2019-05-06 Revised:2019-09-11 Online:2020-05-11 Published:2020-07-08
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2017YFC0805201), the National Natural Science Foundation of China (51674158,51934004,51974176), the Key Basic Projects of Shandong Province Natural Science Foundation (ZR2018ZA0602) and the Special Funds for Taishan Scholar Project (TS20190935).

摘要: 为研究煤炭深部开采区域内温度对煤体渗流以及孔裂隙结构变形的影响,应用CT三维重构技术,借助ANSYS软件对煤体微观孔裂隙结构分别进行共轭传热模拟和热变形模拟。共轭传热模拟结果显示,20℃的水经80℃的煤体壁面加热后以37.13℃流出,煤体温度沿壁面向流体中心逐渐降低,孔裂隙结构对于流动速度和温度的分布有重要的影响,沿流动方向截面连通孔隙率大,则流动速度慢,流体升温快,固体温度下降;反之,则流动速度快,流体升温变缓,固体温度回升。热变形模拟结果显示,骨架变形量与距约束面的距离成正比,约束面附近变形量小,变形方向指向孔裂隙空间,距约束面远的位置变形量大,变形方向向外发散,裂隙的存在会使变形量增加,且随温度载荷的增加,不同孔裂隙结构间的变形差异增加。

关键词: 煤, CT三维重构, 共轭传热, 截面连通孔隙率, 热变形

Abstract: In order to investigate the influence of temperature in deep coal mining area on coal seepage and pore fracture structure deformation, 3D CT reconstruction technology and ANSYS were used to simulate the process of conjugate heat transfer and thermal deformation of coal microstructure respectively. The conjugate heat transfer simulation results show that water that was initially injected into the 80℃ coal wall at 20℃ was heated to 37.13℃ when it flows out. The temperature of the coal gradually decreases along the wall facing the fluid center. Pore fracture structure has an important influence on the velocity and the temperature of the flow along the flow direction. When the connected cross-section porosity is large, the flow speed is slow, the fluid heats up quickly, and the solid temperature decreases. On the other hand, when the connected cross section porosity is small, the flow speed is fast, the fluid temperature rises slowly, and the solid temperature rises. The thermal deformation simulation results show that the deformation is proportional to the distance from the constraint surface. When the deformation near the constraint surface is small, and the direction is pointed to the pore fracture space. While if the deformation at a place that is far away from the constraint surface is large, the deformation direction is diverging outward. Moreover, the existence of the cracks will increase the deformation, the deformation difference between the different pore or crack structures will also increases with the increasing temperature.

Key words: coal, 3D CT reconstruction, conjugate heat transfer, cross-section connected porosity, thermal deformation

中图分类号: 

  • TD 325
[1] 吴俊, 征西遥, 杨爱武, 李延波. 矿渣−粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.
[2] 李波波, 王忠晖, 任崇鸿, 张尧, 许江, 李建华, . 水-力耦合下煤岩力学特性及损伤本构模型研究[J]. 岩土力学, 2021, 42(2): 315-323.
[3] 程亮, 许江, 周斌, 彭守建, 闫发志, 杨孝波, 杨文健. 不同瓦斯压力对煤与瓦斯突出两相流 传播规律的影响研究[J]. 岩土力学, 2020, 41(8): 2619-2626.
[4] 陈光波, 秦忠诚, 张国华, 李谭, 李敬凯, . 受载煤岩组合体破坏前能量分布规律[J]. 岩土力学, 2020, 41(6): 2021-2033.
[5] 艾迪昊, 李成武, 赵越超, 李光耀, . 煤体静载破坏微震、电磁辐射及裂纹扩展特征研究[J]. 岩土力学, 2020, 41(6): 2043-2051.
[6] 杨赫, 程卫民, 刘震, 王文玉, 赵大伟, 王文迪. 注水煤体有效渗流通道结构分形特征 核磁共振试验研究[J]. 岩土力学, 2020, 41(4): 1279-1286.
[7] 杨军, 魏庆龙, 王亚军, 高玉兵, 侯世林, 乔博文, . 切顶卸压无煤柱自成巷顶板变形 机制及控制对策研究[J]. 岩土力学, 2020, 41(3): 989-998.
[8] 陈仁朋, 王朋飞, 刘鹏, 程威, 康馨, 杨微, . 路基煤矸石填料土-水特征曲线试验研究[J]. 岩土力学, 2020, 41(2): 372-378.
[9] 安百富, 王栋达, 庞继禄, 张恒, 曹国磊, . 充填回收房式煤柱围岩变形及煤柱承载 特征物理模拟研究[J]. 岩土力学, 2020, 41(12): 3979-3986.
[10] 彭守建, 郭世超, 许江, 郭臣业, 张超林, 贾立, . 采动诱导应力集中对顺层钻孔瓦斯抽采 影响的试验研究[J]. 岩土力学, 2019, 40(S1): 99-108.
[11] 王欢, 陈群, 王红鑫, 张文举, . 不同压实度和基质吸力的粉煤灰三轴试验研究[J]. 岩土力学, 2019, 40(S1): 224-230.
[12] 陈栋, 王恩元, 李楠, . 不同煤岩介质模型的波场特征研究[J]. 岩土力学, 2019, 40(S1): 449-458.
[13] 王东星, 肖杰, 李丽华, 肖衡林, . 基于碳化-固化技术的武汉东湖淤泥 耐久性演变微观机制[J]. 岩土力学, 2019, 40(8): 3045-3053.
[14] 王瑞, 闫帅, 柏建彪, 常治国, 宋远霸, . 端帮开采下煤柱破坏宽度计算及失稳机制研究[J]. 岩土力学, 2019, 40(8): 3167-3180.
[15] 马德鹏, 周岩, 刘传孝, 商岩冬, . 不同卸围压速率下煤样卸荷破坏能量演化特征[J]. 岩土力学, 2019, 40(7): 2645-2652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 姜领发,陈善雄,于忠久. 饱和土中任意形状衬砌对稳态压缩波的散射[J]. , 2009, 30(10): 3063 -3070 .
[3] 吴振君,王水林,葛修润. 约束随机场下的边坡可靠度随机有限元分析方法[J]. , 2009, 30(10): 3086 -3092 .
[4] 张文杰,陈云敏,邱战洪. 垃圾土渗透性和持水性的试验研究[J]. , 2009, 30(11): 3313 -3317 .
[5] 谢凌志,周宏伟,谢和平. 盐岩CO2处置相关研究进展[J]. , 2009, 30(11): 3324 -3330 .
[6] 崔 凯,谌文武,张景科,韩文峰,梁收运. 多元层状边坡土体风蚀速率与微结构参数关系[J]. , 2009, 30(9): 2741 -2746 .
[7] 赵明华,刘敦平,张 玲. 考虑桩体固结变形的散体材料桩复合地基固结解析计算[J]. , 2010, 31(2): 483 -488 .
[8] 贾 宁,孟庆辉,贾 剑. 输电线路杆塔危岩威胁等级评价方法研究[J]. , 2010, 31(2): 604 -608 .
[9] 卢坤林,杨 扬. 非极限主动土压力计算方法初探[J]. , 2010, 31(2): 615 -619 .
[10] 赵延林,王卫军,曹 平,王 军,赵阳升. 不连续面在双重介质热-水-力三维耦合分析中的有限元数值实现[J]. , 2010, 31(2): 638 -644 .