岩土力学 ›› 2020, Vol. 41 ›› Issue (11): 3695-3704.doi: 10.16285/j.rsm.2020.0092
刘庭伟1, 2,李俊超1, 2,朱斌1, 2,汪玉冰1, 2,高玉峰3,陈云敏1, 2
LIU Ting-wei1, 2, LI Jun-chao1, 2, ZHU Bin1, 2, WANG Yu-bing1, 2, GAO Yu-feng3, CHEN Yun-min1, 2
摘要: 地震作用下土石坝液化易导致坝坡失稳滑移等严重后果,加密法是常用的抗液化手段之一。针对坝趾压重与坝壳翻压两种坝身加密加固方法,开展了离心机振动台试验,分析了不同加密型抗液化处理的小型土石坝坝坡地震响应规律。试验结果表明,由于高水头作用下坝坡底部土体软化,未处理坝坡加速度放大系数沿高程先减小后增大,而加密坝坡加速度放大系数沿高程逐渐增大,且坝坡表面处加速度存在表面放大现象。坝趾压重和坝壳翻压提高了坝身有效应力,降低地震产生的超静孔压比,有效防止土体液化。未处理坝坡在峰值加速度为0.24g地震作用下即发生坝趾液化现象,而加密坝坡在峰值加速度为0.24g和0.45g下均未发生液化。未处理坝坡整体侧向位移大,加密处理后,在峰值加速度为0.24g下坝坡整体表现为竖向位移。坝趾压重区坝趾水平位移明显减小,坝壳翻压区坡顶沉降减小了50%。试验结果验证了坝趾压重和坝壳翻压的抗液化效果,为小型土石坝抗震加固设计提供了参考。
中图分类号:
[1] | 李平, 张宇东, 薄涛, 辜俊儒, 朱胜. 基于离心机振动台试验的梯形河谷场地 地震动效应研究[J]. 岩土力学, 2020, 41(4): 1270-1278. |
[2] | 朱俊高, 赵晓龙, 何顺宾, 田雨, . UH模型对粗颗粒土适用性验证及土石坝工程应用[J]. 岩土力学, 2020, 41(12): 3873-3881. |
[3] | 王丽艳, 巩文雪, 曹晓婷, 姜朋明, 王炳辉. 砾钢渣抗液化特性试验研究[J]. 岩土力学, 2019, 40(10): 3741-3750. |
[4] | 周雄雄, 迟世春, 贾宇峰, 谢芸菲, . 高土石坝填筑过程的精细化模拟方法[J]. 岩土力学, 2018, 39(S2): 443-450. |
[5] | 张泽林, 吴树仁, 王 涛, 唐辉明, 梁昌玉, . 地震波振幅对黄土-泥岩边坡动力响应规律的影响[J]. 岩土力学, 2018, 39(7): 2403-2412. |
[6] | 余 翔,孔宪京,邹德高,周晨光, . 覆盖层上土石坝非线性动力响应分析的地震波动输入方法[J]. , 2018, 39(5): 1858-1866. |
[7] | 吴震宇,陈建康. 土坡体系可靠度分析方法及在高土石坝工程中的应用[J]. , 2018, 39(2): 699-704. |
[8] | 郭万里,朱俊高,余 挺,金 伟,. 土的连续级配方程在粗粒料中的应用[J]. , 2018, 39(10): 3661-3667. |
[9] | 李 博,黄茂松,. 掺有橡胶粉末砂土液化特性的动三轴试验研究[J]. , 2017, 38(5): 1343-1349. |
[10] | 陈国兴 ,顾小锋 ,常向东 ,李小军 ,周国良,. 1989~2011期间8次强地震中抗液化地基处理成功案例的回顾与启示[J]. , 2015, 36(4): 1102-1118. |
[11] | 吴志伟 ,宋汉周,. 基于流-热耦合模型的土石坝渗流热监测研究[J]. , 2015, 36(2): 584-590. |
[12] | 周建烽 ,王均星 ,陈 炜 ,罗贝尔,. 线性与非线性强度的土石坝坝坡稳定分析下限法[J]. , 2015, 36(1): 233-239. |
[13] | 刘振平 ,迟世春 ,任宪勇,. 基于土石坝动力特性的坝料动力参数反演[J]. , 2014, 35(9): 2594-2601. |
[14] | 王 莉 ,谭卓英 ,朱博浩 ,周 喻 , . 淤泥冲击挤压作用下软基土石坝动力响应分析[J]. , 2014, 35(3): 827-834. |
[15] | 周 成 ,陈生水 ,何建村 ,何 宁 ,吴 艳 ,张桂荣 . 考虑土石料颗粒破碎和密度变化的次塑性本构模型建模方法[J]. , 2013, 34(S2): 18-21. |
|