岩土力学 ›› 2020, Vol. 41 ›› Issue (11): 3695-3704.doi: 10.16285/j.rsm.2020.0092

• 基础理论与实验研究 • 上一篇    下一篇

小型土石坝加密抗液化离心机振动台试验研究

刘庭伟1, 2,李俊超1, 2,朱斌1, 2,汪玉冰1, 2,高玉峰3,陈云敏1, 2   

  1. 1. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058;2. 浙江大学 超重力研究中心,浙江 杭州 310058; 3. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098
  • 收稿日期:2020-01-09 修回日期:2020-04-13 出版日期:2020-11-11 发布日期:2020-12-25
  • 通讯作者: 李俊超,男,1988年生,博士,主要从事软弱土基本特性和海洋岩土工程等方面的研究工作。E-mail:lijunchao@ zju.edu.cn E-mail:21812027@zju.edu.cn
  • 作者简介:刘庭伟,男,1995年生,硕士研究生,主要从事坝体动力响应和坝基液化等方面的研究。
  • 基金资助:
    国家自然科学基金重点项目(No. 41630638,No. 51808490);中央高校基本科研业务费专项资金(No. 2018FZA4016)。

Centrifuge shaking table modelling test study on anti-liquefied densification of small earth-rock dam slope

LIU Ting-wei1, 2, LI Jun-chao1, 2, ZHU Bin1, 2, WANG Yu-bing1, 2, GAO Yu-feng3, CHEN Yun-min1, 2   

  1. 1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2020-01-09 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-25
  • Supported by:
    This work was supported by the Key Program of National Natural Science Foundation of China (41630638, 51808490) and the Fundamental Research Funds for the Central Universities (2018FZA4016).

摘要: 地震作用下土石坝液化易导致坝坡失稳滑移等严重后果,加密法是常用的抗液化手段之一。针对坝趾压重与坝壳翻压两种坝身加密加固方法,开展了离心机振动台试验,分析了不同加密型抗液化处理的小型土石坝坝坡地震响应规律。试验结果表明,由于高水头作用下坝坡底部土体软化,未处理坝坡加速度放大系数沿高程先减小后增大,而加密坝坡加速度放大系数沿高程逐渐增大,且坝坡表面处加速度存在表面放大现象。坝趾压重和坝壳翻压提高了坝身有效应力,降低地震产生的超静孔压比,有效防止土体液化。未处理坝坡在峰值加速度为0.24g地震作用下即发生坝趾液化现象,而加密坝坡在峰值加速度为0.24g和0.45g下均未发生液化。未处理坝坡整体侧向位移大,加密处理后,在峰值加速度为0.24g下坝坡整体表现为竖向位移。坝趾压重区坝趾水平位移明显减小,坝壳翻压区坡顶沉降减小了50%。试验结果验证了坝趾压重和坝壳翻压的抗液化效果,为小型土石坝抗震加固设计提供了参考。

关键词: 土石坝, 抗液化, 离心机振动台, 坝趾压重, 坝壳翻压

Abstract: The liquefaction of small earth-rock dam slope under earthquakes is easy to cause serious consequences, such as instability and sliding of the dam slopes. Densification is one of the most commonly used anti-liquefaction methods. Two centrifuge shaking table tests were carried out to analyze the seismic response of small earth-rock dam slopes using two different densification methods, dam toe weight and dam shell compaction, respectively. The test results show that due to soil soften at the bottom of dam slope under the high water head, the acceleration amplification factor of the untreated dam slope decreased firstly and then increased along the elevation, while the acceleration amplification factor of the densified dam slope gradually increased along the elevation. There is a phenomenon of the surface amplification effect. The dam toe weight and dam shell compaction can increase the effective stress, reduce the excess pore pressure ratio caused by the earthquake, and effectively prevent the occurrence of liquefaction. Liquefaction occurred at the toe of the untreated dam slope under the earthquake peak acceleration of 0.24g, while the densified dam slope did not liquefy under the peak acceleration of 0.24g and 0.45g. The untreated dam slope had globally large lateral displacement, while the densified dam slope had mainly global vertical displacement under the peak acceleration of 0.24g after densification. The horizontal displacement of the dam toe in the dam toe weight area was significantly reduced, and the settlement of the dam slope crest in the dam shell compaction area was reduced by 50%. The test results verify the anti-liquefaction effect of dam toe weight and dam shell compaction, and provide references for seismic strengthening design of small earth-rock dams.

Key words: earth-rock dam, anti-liquefaction, centrifuge shaking table, dam toe weight, dam shell compaction

中图分类号: 

  • TV 614
[1] 李平, 张宇东, 薄涛, 辜俊儒, 朱胜. 基于离心机振动台试验的梯形河谷场地 地震动效应研究[J]. 岩土力学, 2020, 41(4): 1270-1278.
[2] 朱俊高, 赵晓龙, 何顺宾, 田雨, . UH模型对粗颗粒土适用性验证及土石坝工程应用[J]. 岩土力学, 2020, 41(12): 3873-3881.
[3] 王丽艳, 巩文雪, 曹晓婷, 姜朋明, 王炳辉. 砾钢渣抗液化特性试验研究[J]. 岩土力学, 2019, 40(10): 3741-3750.
[4] 周雄雄, 迟世春, 贾宇峰, 谢芸菲, . 高土石坝填筑过程的精细化模拟方法[J]. 岩土力学, 2018, 39(S2): 443-450.
[5] 张泽林, 吴树仁, 王 涛, 唐辉明, 梁昌玉, . 地震波振幅对黄土-泥岩边坡动力响应规律的影响[J]. 岩土力学, 2018, 39(7): 2403-2412.
[6] 余 翔,孔宪京,邹德高,周晨光, . 覆盖层上土石坝非线性动力响应分析的地震波动输入方法[J]. , 2018, 39(5): 1858-1866.
[7] 吴震宇,陈建康. 土坡体系可靠度分析方法及在高土石坝工程中的应用[J]. , 2018, 39(2): 699-704.
[8] 郭万里,朱俊高,余 挺,金 伟,. 土的连续级配方程在粗粒料中的应用[J]. , 2018, 39(10): 3661-3667.
[9] 李 博,黄茂松,. 掺有橡胶粉末砂土液化特性的动三轴试验研究[J]. , 2017, 38(5): 1343-1349.
[10] 陈国兴 ,顾小锋 ,常向东 ,李小军 ,周国良,. 1989~2011期间8次强地震中抗液化地基处理成功案例的回顾与启示[J]. , 2015, 36(4): 1102-1118.
[11] 吴志伟 ,宋汉周,. 基于流-热耦合模型的土石坝渗流热监测研究[J]. , 2015, 36(2): 584-590.
[12] 周建烽 ,王均星 ,陈 炜 ,罗贝尔,. 线性与非线性强度的土石坝坝坡稳定分析下限法[J]. , 2015, 36(1): 233-239.
[13] 刘振平 ,迟世春 ,任宪勇,. 基于土石坝动力特性的坝料动力参数反演[J]. , 2014, 35(9): 2594-2601.
[14] 王 莉 ,谭卓英 ,朱博浩 ,周 喻 , . 淤泥冲击挤压作用下软基土石坝动力响应分析[J]. , 2014, 35(3): 827-834.
[15] 周 成 ,陈生水 ,何建村 ,何 宁 ,吴 艳 ,张桂荣 . 考虑土石料颗粒破碎和密度变化的次塑性本构模型建模方法[J]. , 2013, 34(S2): 18-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[4] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[5] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[6] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[7] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[8] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[9] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[10] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .