岩土力学 ›› 2021, Vol. 42 ›› Issue (2): 419-429.doi: 10.16285/j.rsm.2020.0845

• 基础理论与实验研究 • 上一篇    下一篇

随钻跟管桩竖向承载性能原位试验 与室内物理模拟试验对比研究

侯振坤1, 2,唐孟雄1,胡贺松1,黎剑华3,张树文4,徐晓斌3,刘春林1, 2   

  1. 1. 广州市建筑科学研究院有限公司,广东 广州 510440;2. 华南理工大学 材料科学与工程学院,广东 广州 510641; 3. 广州铁路职业技术学院,广东 广州 510430;4. 南华大学 资源环境与安全工程学院,湖南 衡阳 421001
  • 收稿日期:2020-06-19 修回日期:2020-11-05 出版日期:2021-02-10 发布日期:2021-02-09
  • 通讯作者: 黎剑华,男,1967年生,博士,教授,主要致力于重大水利、交通、轨道交通、矿山与地下空间等领域的研究。E-mail: 542331081@qq.com E-mail:zhenkunhoucqu@163.com
  • 作者简介:侯振坤,男,1988年生,博士后,主要从事页岩油气开采、桩基承载机理及桩侧注浆机理研究工作
  • 基金资助:
    广东省基础与应用基础研究基金区域联合基金-青年基金项目(No. 2019A1515110836);岩土力学与工程国家重点实验室资助课题-开放基金(Z019018);国家自然科学基金(No.51678171, No.51908225);中国博士后科学基金(No.2019M662918, No.2019M652899, No.2020M672584)

Comparative study on the vertical load-bearing capacity of the drilling with pre-stressed concrete pipe cased pile based on in-situ and physical simulation tests

HOU Zhen-kun1, 2, TANG Meng-xiong1, HU He-song1, LI Jian-hua3, ZHANG Shu-wen4, XU Xiao-bin3, LIU Chun-lin1, 2   

  1. 1. Guangzhou Institute of Building Science Company Limited, Guangzhou, Guangdong 510440, China; 2. School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China; 3. Guangzhou Railway Polytechnic, Guangzhou, Guangdong 510430, China; 4. School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
  • Received:2020-06-19 Revised:2020-11-05 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the Guangdong Basic and Applied Basic Research Foundation for Young Scholars (2019A1515110836), the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (Z019018), the National Natural Science Foundation of China (51678171, 51908225) and the China Postdoctoral Science Foundation (2019M662918, 2019M652899, 2020M672584).

摘要: 随钻跟管桩(简称DPC桩)是一种钻孔-沉桩-排土同步进行的无泥浆排放的节能环保型大直径(800~1 400 mm)新型非挤土PHC管桩。开展了现场原位试验、理论计算分析及物理模拟试验,对比分析了这种新桩型的承载性能优势、桩侧摩阻力分布特征、荷载传递特性。得到如下结论:(1)原位静载试验中,DPC桩是一种以发挥桩侧摩阻力为主的摩擦端承桩,桩侧摩阻力占比高达67.84%~72.85%,DPC桩的承载性能与注浆效果密切相关,相对于同等条件下的钻孔灌注桩、锤击法管桩,其竖向承载力分别提高了33.42%、23.16%,DPC桩的桩底沉渣厚度较小时,其荷载-位移曲线为缓变形(1号桩),否则为陡降形(2号桩);(2)室内物理模型试验中,各桩型均未嵌岩条件下,DPC桩、钻孔灌注桩、锤击法管桩3种桩型的荷载-位移曲线均为陡降形,DPC桩的承载力相对于钻孔灌注桩提高了18.60%;(3)不同的成桩工艺下桩的摩阻力差距较大,随钻跟管桩的桩侧摩阻力最大,钻孔灌注桩次之,锤击法管桩最小,这与物理试验钻孔灌注桩桩侧模拟泥皮密切相关;所有桩型桩侧摩阻力沿桩身深度分布规律均表现出了两头小中间大的规律;随着荷载增加,桩侧摩阻力逐渐下移,直至桩基破坏;(4)模型试验中随钻跟管桩桩侧摩阻力为6 061.65 N,占其极限承载力(8 147.62 N)的74.40%,模型试验同样得出随钻跟管桩是一种以发挥桩侧摩阻力为主的摩擦端承桩。

关键词: 随钻跟管桩, 现场原位试验, 物理模拟试验, 承载性能, 桩侧摩阻力分布, 荷载传递特性

Abstract: The drilling with pre-stressed concrete pipe cased pile (referred to as DPC pile) is a new type of large-diameter (800?1 400 mm) non soil-squeezing PHC pipe pile with drilling hole, sinking pile and discharging soil occurring simultaneously. DPC pile is energy-saving and environmental-friendly. In this paper, in-situ tests, theoretical calculation analysis and physical simulation tests are carried out to compare and analyze the better vertical load-bearing capacity of this new type of pile, the skin friction distribution characteristics and the load transfer characteristics. Based on the aforementioned tests, the following conclusions are obtained. 1) In the in-situ tests, DPC pile is a type of end bearing friction pile, whose vertical bearing capacity is mainly dominated by skin friction with a proportion variation ranging from 67.84% to 72.85%. The bearing capacity of DPC pile is closely related to the grouting effect and it has been increased by 33.42% and 23.16% compared to the large diameter drill hole pile and hammered pipe pile, respectively. When the sediment thickness at the bottom of the DPC pile is small, the load-displacement curve belongs to slow deformation type (pile No. 1), otherwise it belongs to a steep drop type (pile No. 2). 2) Indoor physical model tests in sand show that the load-displacement curves of DPC pile, large diameter drill hole pile and hammered pipe pile belong to the steep drop curves under the condition that all the three types of pile mentioned above are not rock-socketed. The load-bearing capacity of DPC pile has been improved by 18.60% compared with large diameter drill hole pile. 3) The skin friction of piles with different manufacturing processes are quite different, i.e. the skin friction of DPC pile is the largest, followed by the large diameter drill hole pile, and finally the hammered pipe pile, which is related to the physical test of the simulating mud on the side of large diameter drill hole pile. The distribution rule of the skin friction of all pile types along the depth of the pile body shows a rule “a large portion in the middle and a small portion at both ends”. As the load increases, the position of the maximum skin friction gradually moves downward from the top of the pile to its deepest position until the pile foundation is damaged. 4) Under the ultimate bearing capacity, the skin friction of DPC pile is 6 061.65 N, which accounts for 74.40% of its ultimate bearing capacity (8 147.62 N). It can be implied that the DPC pile is a type of end bearing friction pile and is mainly dominated by skin friction.

Key words: the drilling with pre-stressed concrete pile cased pile (DPC pile), in-situ tests, physical simulation tests, load-bearing properties, skin friction distribution, load transfer characteristics

中图分类号: 

  • TU 473
[1] 任连伟, 任军洋, 孔纲强, 刘汉龙, . 冷热循环下PHC能量桩热力响应 和承载性能现场试验[J]. 岩土力学, 2021, 42(2): 529-536.
[2] 刘春林, 唐孟雄, 胡贺松, 岳云鹏, 侯振坤, 陈航, . 考虑桩底沉渣的随钻跟管桩竖向承载 特性模型试验研究[J]. 岩土力学, 2021, 42(1): 177-185.
[3] 王家全, 徐良杰, 黄世斌, 刘政权. 动载下土工格栅加筋桥台挡墙承载性能分析[J]. 岩土力学, 2019, 40(11): 4220-4228.
[4] 周佳锦,龚晓南,严天龙,张日红, . 软土地区填砂竹节桩抗压承载性能研究[J]. , 2018, 39(9): 3425-3432.
[5] 胡贺松, 陈晓斌, 唐孟雄, 廖湘英, 肖源杰, . 随钻跟管桩桩-土接触面作用机制 大型直剪试验研究[J]. 岩土力学, 2018, 39(12): 4325-4334.
[6] 过 超,付佰勇,龚维明,. 粉质黏土中沉箱-桩复合基础水平向承载性能试验研究[J]. , 2016, 37(S1): 350-358.
[7] 周佳锦,王奎华,龚晓南,张日红,严天龙,. 静钻根植竹节桩桩端承载性能试验研究[J]. , 2016, 37(9): 2603-2609.
[8] 李宝建 ,李光范 ,胡 伟 ,赵 菲 ,金燦起,. 材料复合桩的现场承载性能试验研究[J]. , 2015, 36(S2): 629-632.
[9] 周佳锦 ,龚晓南 ,王奎华 ,张日红 ,许远荣,. 静钻根植竹节桩桩端承载性能数值模拟研究[J]. , 2015, 36(S1): 651-656.
[10] 徐兆邦 ,周 健 ,李素华,. 城市桥梁基桩承载性能时间效应试验研究[J]. , 2014, 35(S1): 227-232.
[11] 杜一鸣 ,郑 刚 ,张立明,. 考虑深基坑开挖效应的超长灌注桩桩身压缩综合系数的理论分析[J]. , 2014, 35(7): 2019-2028.
[12] 陈志坚 ,陈欣迪 ,唐 勇 ,张宁宁 . 超大型深水群桩基础的传感器保护技术[J]. , 2012, 33(11): 3509-3515.
[13] 柯 洪 ,吴 翔 ,王继华 ,曾云川 ,赵春宏 ,冯庆高. 天津厚地层超长钻孔灌注桩单桩承载特性研究[J]. , 2011, 32(9): 2821-2826.
[14] 徐 敏,宋林辉,周 峰,梅国雄,宰金珉. 新型伞状抗拔锚现场试验与数值模拟[J]. , 2009, 30(S1): 24-28.
[15] 龚维明,于清泉,戴国亮. 越南大翁桥桩基承载性能试验研究[J]. , 2009, 30(2): 558-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[3] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[4] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[5] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[6] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .
[7] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[8] 荣 冠,王思敬,王恩志,刘顺桂. 白鹤滩河谷演化模拟及P2β3玄武岩级别评估[J]. , 2009, 30(10): 3013 -3019 .
[9] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[10] 陈 松,徐光黎,陈国金,吴雪婷. 三峡库区黄土坡滑坡滑带工程地质特征研究[J]. , 2009, 30(10): 3048 -3052 .