岩土力学 ›› 2021, Vol. 42 ›› Issue (2): 301-314.doi: 10.16285/j.rsm.2020.1393

• 岩土力学卓越论坛 •    下一篇

弹塑性有限元分析中几个难点问题的一揽子方案

郑 宏,张 谭,王秋生   

  1. 北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124
  • 收稿日期:2020-09-16 修回日期:2021-01-04 出版日期:2021-02-10 发布日期:2021-02-09
  • 作者简介:郑宏,男,1964年生,博士,教授,主要从事岩土力学数值分析等方面的教学和研究工作。
  • 基金资助:
    国家自然科学基金(No. 52079002)

One package of schemes for some difficult issues in finite element plasticity analysis

ZHENG Hong, ZHANG Tan, WANG Qiu-sheng   

  1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2020-09-16 Revised:2021-01-04 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52079002).

摘要: Mohr-Coulomb准则在Mohr应力空间中具有最简形式,同时也因其非常可靠而在经典的极限分析或极限平衡法中得到了最广泛的应用。然而,应力空间中的Mohr-Coulomb屈服面是非光滑的,这给基于变形分析的弹塑性有限元法中的本构积分带来了巨大的麻烦。此外,在求解强度问题时,基于载荷控制法(LCM)的求解器很难将有限元模型带入极限平衡状态。针对这些问题,本研究给出了以下解决方案。首先,设计了适用于带非光滑屈服面的塑性本构积分算法GSPC。GSPC对任意大小的应变增量都收敛,数值特性远优于现有的返回-映射算法。还为弹塑性有限元分析定制了一个位移控制法(DCM)求解器,该DCM能将有限元模型带入极限平衡状态而不存在收敛性方面的问题,计算效率和鲁棒性都远优于现有的基于LCM的求解器。最后,结合强度折减法,建议了求解边坡安全系数的割线法,并给出了极限平衡状态下坡顶拉裂缝位置和深度的确定技术。

关键词: 塑性本构积分, Mohr-Coulomb屈服面, 位移控制法, 边坡稳定性, 拉裂缝

Abstract: The Mohr-Coulomb yield criterion takes on the simplest form in the Mohr stress space, which has thus been most extensively applied in limit analysis and limit equilibrium methods because of its accuracy. However, the Mohr-Coulomb yield surface in the stress space is non-smooth, causing huge troubles to the constitutive integration in the deformation based finite element plasticity analysis. In addressing strength problems, meanwhile, solvers based on the load controlled method (LCM) are hard to bring the finite element model to the limit equilibrium state. Aiming at these issues, the solution schemes are proposed as follows. First, an algorithm named GSPC is designed for the constitutive integration for plasticity with non-smooth yield surfaces. GSPC is always convergent for arbitrary large strain increments, with far more excellent numerical properties than the return-mapping methods available. A solver based on the displacement controlled method (DCM) is developed for the finite element plasticity analysis. The DCM solver is able to bring easily the finite element model into the limit equilibrium state, with no convergence issue, and far more efficient and robust than any LCM solvers. At last, combined with the strength reduction method, the secant method for the factor of safety of slopes is developed, and the location and depth of tension cracks at the slope top are proposed. Keywords: constitutive integration for plasticity; Mohr-Coulomb yield surface; displacement controlled method; slope stability; tension cracks

Key words: constitutive integration for plasticity, Mohr-Coulomb yield surface, displacement controlled method, slope stability, tension cracks

中图分类号: 

  • O 241
[1] 潘永亮, 简文星, 李林均, 林雨秋, 田朋飞. 基于改进Green-Ampt模型的花岗岩 残积土边坡降雨入渗规律研究[J]. 岩土力学, 2020, 41(8): 2685-2692.
[2] 史振宁, 戚双星, 付宏渊, 曾铃, 何忠明, 方睿敏, . 降雨入渗条件下土质边坡含水率分 布与浅层稳定性研究[J]. 岩土力学, 2020, 41(3): 980-988.
[3] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[4] 余 国, 谢谟文, 郑正勤, 覃事河, 杜 岩, . 基于GIS的边坡稳定性计算方法研究[J]. 岩土力学, 2019, 40(4): 1397-1404.
[5] 夏侯云山, 张抒, 唐辉明, 刘晓, 吴琼, . 考虑参数空间变异结构的结构化交叉约束 随机场模拟方法研究[J]. 岩土力学, 2019, 40(12): 4935-4945.
[6] 唐洪祥, 韦文成. 耦合强度各向异性与应变软化的边坡稳定 有限元分析[J]. 岩土力学, 2019, 40(10): 4092-4100.
[7] 代仲海,胡再强,尹小涛,吴振君,. 工程荷载作用下缓倾角反倾似层状岩质边坡变形稳定性分析[J]. , 2018, 39(S1): 412-418.
[8] 秦雨樵,汤 华,冯振洋,尹小涛,王东英, . 基于聚类分析的边坡稳定性研究[J]. , 2018, 39(8): 2977-2983.
[9] 朱彦鹏,杨晓宇,马孝瑞,杨校辉,叶帅华, . 边坡稳定性分析双折减法的几个问题[J]. , 2018, 39(1): 331-338.
[10] 康孝森,廖红建,冷先伦,郝东瑞,. 入渗影响下黄土边坡张拉裂缝极限深度探讨[J]. , 2017, 38(S2): 197-202.
[11] 聂治豹,郑 宏,张 谭. 基于强度折减法确定边坡临界滑面的小波变换法[J]. , 2017, 38(6): 1827-1831.
[12] 刘振平,杨 波,刘 建,贺怀建,. 基于GRASS GIS与TIN滑动面的边坡三维极限平衡方法研究[J]. , 2017, 38(1): 221-228.
[13] 蒋泽锋 ,朱大勇,. 强降雨条件下具有张裂缝边坡临界滑动场[J]. , 2016, 37(S2): 25-34.
[14] 薛海斌,党发宁,尹小涛,丁卫华,刘海伟,. 非稳定渗流条件下非饱和土质边坡稳定性的矢量和分析法研究[J]. , 2016, 37(S1): 49-56.
[15] 王 双,李小春,石 露,刘召胜,. 物质点强度折减法及其在边坡中的应用[J]. , 2016, 37(9): 2672-2678.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[3] 陈 松,徐光黎,陈国金,吴雪婷. 三峡库区黄土坡滑坡滑带工程地质特征研究[J]. , 2009, 30(10): 3048 -3052 .
[4] 姜领发,陈善雄,于忠久. 饱和土中任意形状衬砌对稳态压缩波的散射[J]. , 2009, 30(10): 3063 -3070 .
[5] 温 森,赵延喜,杨圣奇. 基于Monte Carlo-BP神经网络TBM掘进速度预测[J]. , 2009, 30(10): 3127 -3132 .
[6] 孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. , 2009, 30(11): 3217 -3231 .
[7] 赵成刚,蔡国庆. 非饱和土广义有效应力原理[J]. , 2009, 30(11): 3232 -3236 .
[8] 张 凯,周 辉,冯夏庭,房敬年,张元刚. Biot固结理论中连续性方程形式的讨论[J]. , 2009, 30(11): 3273 -3277 .
[9] 孔位学,芮勇勤,董宝弟. 岩土材料在非关联流动法则下剪胀角选取探讨[J]. , 2009, 30(11): 3278 -3282 .
[10] 于小军,施建勇,徐杨斌. 考虑各向异性的软黏土扰动状态本构模型[J]. , 2009, 30(11): 3307 -3312 .