岩土力学 ›› 2021, Vol. 42 ›› Issue (10): 2830-2844.doi: 10.16285/j.rsm.2021.0108

• 岩土工程研究 • 上一篇    下一篇

考虑爆源特征的岩石爆破诱发地震波的 波型与组分分析

高启栋1,卢文波2,冷振东3,王亚琼1,周海孝1,张士朝1   

  1. 1. 长安大学 公路学院,陕西 西安 710064;2. 武汉大学 水工岩石力学教育部重点实验室,湖北 武汉 430072; 3. 中国葛洲坝集团易普力股份有限公司,重庆 401121
  • 收稿日期:2021-01-15 修回日期:2021-07-06 出版日期:2021-10-11 发布日期:2021-10-20
  • 通讯作者: 冷振东,男,1989年生,博士,高级工程师,主要从事岩石动力学及工程爆破技术研究。E-mail: zdleng@whu.edu.cn E-mail:qdgao@chd.edu.cn
  • 作者简介:高启栋,男,1991年生,博士,讲师,主要从事工程爆破与岩石动力学等相关的教学与科研工作
  • 基金资助:
    国家自然科学基金(No. 52009003,No. 51809016);中央高校基本科研业务费专项基金(No. 300102210123);水工岩石力学教育部重点实验室开放研究基金(No. EMHSE1903)

Analysis of wave-type and seismic component induced by rock blasting considering source characteristics

GAO Qi-dong1, LU Wen-bo2, LENG Zhen-dong3, WANG Ya-qiong1, ZHOU Hai-xiao1, ZHANG Shi-chao1   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China; 3. China Gezhouba Group Explosive Co., Ltd., Chongqing 401121, China
  • Received:2021-01-15 Revised:2021-07-06 Online:2021-10-11 Published:2021-10-20
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52009003, 51809016), the Fundamental Research Funds for the Central Universities (300102210123) and the Open Research Funds of Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education (EMHSE1903).

摘要: 爆破地震波通常由压缩波(P波)、剪切波(S波)和瑞利面波(R波)等共同组成,但现有爆破振动衰减规律和安全判据研究中并未区分波型和组分。采用一种基于偏振方向预判的爆破地震波波型判别方法,通过理论分析和数值模拟,研究了不同形状药包的爆源特征及其激发的波型;结合现场爆破试验,分析了垂直单孔、水平光爆孔和边预裂孔3种典型爆破孔诱发地震波的波型与组分,探讨了不同爆破孔的爆源特征与力学作用机制,并对特定位置处的主导作用波型进行了预判。结果表明:垂直单孔的爆源可近似为短柱药包的延时叠加,地表爆破振动同时包含P、S和R波的贡献,随着爆心距增大,S波逐渐偏离其优势辐射方位,而P波主要作用于水平径向振动,R波将主导竖直向振动;水平光爆孔和边坡预裂孔均属轮廓爆破孔,二者力学作用机制相似,以轮廓面上的法向荷载为主,且轮廓面上的爆破地震波主要由S和R波组成,而P波的作用比较微弱,随爆心距增大,R波将成为主导作用波型,但轮廓面外P波的作用则不可忽略。

关键词: 岩石爆破, 爆破地震波, 爆源特征, 波型与组分, 主导作用波型

Abstract: The blasting induced seismic waves are generally composed of compressional wave (P-wave), shear wave (S-wave), and Rayleigh wave (R-wave), however, wave-type and seismic components are not differentiated in the attenuation law and safety criteria for the current blast vibration studies. In this study, a method of wave-type discrimination is used for the seismic wave prediction based on polarization direction. Using theoretical analysis and numerical modelling, the blasting source characteristics and the radiated wave-types are investigated for different shapes of explosive charge. Combined the results of the site blasting experiments, the wave-type and seismic components induced by three typical blast-holes are analyzed and three blast holes include the single vertical blast-hole, the smooth blast-hole, and the slope pre-splitting blast-hole. The source characteristics and acting mechanism are then discussed for different blast-holes. The dominant wave-type at special location is predicted for three blast types. The research results indicate that the blasting source of the vertical blast-hole can be viewed as a delay superposition of the short explosive column. All the P-, S-, and R-waves contribute to the ground surface vibration from the vertical blast-hole. With the increase of the blasting-target distance, it is found that the S-wave gradually deviates from its dominant radiation direction, while the P-wave mainly contributes to the horizontal radial vibration, and the R-wave dominates the vertical vibration. Because the horizontal smooth blast-hole and the slope pre-splitting blast-hole are both contour blast-holes, the two blast holes have a similar acting mechanism, in which the main acting force is the loading from the normal surface. The S- and R-waves are the dominant seismic wave types within the blasting contour surface, whereas the role of the P-wave is negligible. Besides, the R-wave becomes the dominant wave-type as the blasting center distance increases; however, the contribution of P-wave outside the contour surface cannot be ignored.

Key words: rock blasting, blasting-induced seismic wave, source characteristics, wave-type and seismic components, dominant wave-type

中图分类号: 

  • O 382
[1] 陈士海, 宫嘉辰, 胡帅伟, . 爆破荷载下围岩及支护锚杆动力响应特征 模型试验研究[J]. 岩土力学, 2020, 41(12): 3910-3918.
[2] 廖 涛 ,蒲传金 ,杨 鑫 ,管少华 ,郭王林 , . 桩井爆破振动在邻近边坡产生的特殊效应[J]. , 2015, 36(S2): 623-628.
[3] 严成增 ,孙冠华 ,郑 宏 ,葛修润,. 爆炸气体驱动下岩体破裂的有限元-离散元模拟[J]. , 2015, 36(8): 2419-2425.
[4] 李兴华 ,龙 源 ,纪 冲 ,周 翔 ,何洋扬 ,路 亮 . 爆破地震波作用下既有圆形隧道衬砌动应力集中系数分析[J]. , 2013, 34(8): 2218-2224.
[5] 甯尤军,杨 军,陈鹏万. 节理岩体爆破的DDA方法模拟[J]. , 2010, 31(7): 2259-2263.
[6] 吴 亮 ,卢文波 ,宗 琦 . 岩石中柱状装药爆炸能量分布[J]. , 2006, 27(5): 735-739.
[7] 黄理兴;. 应力波对裂隙的作用[J]. , 1985, 6(2): 89-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖衡林,余天庆. 山区挡土墙土压力的现场试验研究[J]. , 2009, 30(12): 3771 -3775 .
[2] 江洎洧,项 伟,唐辉明,曾 斌,黄 玲. 极限蓄水位下洞坪水库大沟湾滑坡稳定性预测[J]. , 2010, 31(3): 805 -810 .
[3] 卢 正,姚海林,刘干斌,骆行文. 简谐线源荷载作用下热流固耦合地基的动力响应[J]. , 2010, 31(7): 2309 -2316 .
[4] 赵明华,孙建兵,张永杰. 基于Winkler模型的双向增强体复合地基沉降计算[J]. , 2010, 31(11): 3459 -3463 .
[5] 杨玉贵,赖远明,李双洋,董元宏. 冻结粉土三轴压缩变形破坏与能量特征分析[J]. , 2010, 31(11): 3505 -3510 .
[6] 崔皓东,张家发,张 伟,王金龙. 南水北调中线典型承压水地层渠段渗流场数值分析[J]. , 2010, 31(S2): 447 -451 .
[7] 付 伟,汪 稔,胡明鉴,向焱红. 不同温度下冻土单轴抗压强度与电阻率关系研究[J]. , 2009, 30(1): 73 -78 .
[8] 孙富学,蔡晓鸿,朱云辉. 基于初参数法的多心圆拱隧道衬砌结构内力与变位求解[J]. , 2009, 30(4): 1127 -1130 .
[9] 李守巨,刘迎曦,于 贺. 多孔材料等效导热系数与分形维数关系的数值模拟研究[J]. , 2009, 30(5): 1465 -1470 .
[10] 胡 昕,洪宝宁,杜 强,孟云梅. 含水率对煤系土抗剪强度的影响[J]. , 2009, 30(8): 2291 -2294 .