岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 382-391.doi: 10.16285/j.rsm.2021.0286

• 岩土工程研究 • 上一篇    下一篇

煤巷弱胶结顶板稳定性分析与变形控制技术

余伟健1, 2,李可1, 3,刘泽1,郭涵潇1,安百富1,王平1, 2   

  1. 1. 湖南科技大学 资源环境与安全工程学院,湖南 湘潭 411201;2. 湖南科技大学 煤炭资源清洁利用与矿山环境保护湖南省重点实验室,湖南 湘潭 411201;3. 贵州理工学院 矿业工程学院,贵州 贵阳 550003
  • 收稿日期:2021-02-26 修回日期:2021-05-31 出版日期:2022-10-10 发布日期:2022-10-09
  • 通讯作者: 李可,男,1986年生,博士研究生,副教授,主要从事深部岩石力学与围岩控制等方面研究和教学工作。E-mail: 20120016@git.edu.cn E-mail: ywjlah@163.com
  • 作者简介:余伟健,男,1978年生,博士,教授,博士生导师,主要从事深部岩石力学与围岩控制等方面研究和教学工作。
  • 基金资助:
    国家自然科学基金资助项目(No.51974117,No.52174076);湖南省自然科学基金项目(No.2020JJ4027);贵州省科技计划项目(黔科合基础-ZK[2022]一般176)。

Stability analysis and deformation control technology for weakly cemented roof of coal roadway

YU Wei-jian1, 2, LI Ke1, 3, LIU Ze1, GUO Han-xiao1, AN Bai-fu1, WANG Ping1, 2   

  1. 1. School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 2. Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; 3. College of Mining, Guizhou Institute of Technology, Guiyang, Guizhou 550003, China
  • Received:2021-02-26 Revised:2021-05-31 Online:2022-10-10 Published:2022-10-09
  • Supported by:
    This work was supported by the National Science Foundation of China (51974117, 52174076), the Natural Science Foundation of Hunan Province (2020JJ4027) and the Science and Technology Planning Foundation of Guizhou Province (QKHJC-ZK[2022]YB176).

摘要: 煤层顶板为弱胶结岩体时稳定性差,常在煤炭回采过程中或巷道掘进时发生大变形或失稳等现象,维护难度较大。针对煤巷弱胶结粉砂岩顶板力学特征与变形控制等问题,以广西林场煤矿煤巷弱胶结粉砂岩顶板支护工程为工程背景,采用现场调研、实验室试验、理论分析等方法进行研究。通过现场调研,发现研究巷道有顶板岩层自承能力差、受水环境影响、支护结构失效率高、底板受水影响底鼓量大、受采动影响等特征;顶板岩石点荷载试验表明,其单轴抗压强度仅为1.9~ 2.3 MPa,采用电镜扫描发现,弱胶结粉砂岩以粗粒矿物为骨架;在普氏理论的基础上,推导了巷道顶板和两帮承压极限表达式,提出了提高巷道围岩整体强度和承载能力、确定合理的锚杆支护参数、顶板设计锚索加强支护等弱胶结巷道围岩控制要点。依据试验分析与理论研究成果,提出了以注浆加固为基础,锚杆和锚索联合支护的控制方案,并在林场煤矿进行了工业性试验。现场监测数据表明,设计的支护方案可以有效地控制煤巷弱胶结粉砂岩顶板变形。

关键词: 回采巷道, 弱胶结顶板, 围岩稳定性, 注浆加固, 联合支护技术

Abstract: The weakly cemented rock mass makes poor stability. Large deformation often occurs during coal mining or roadway excavation, which brings maintenance difficulties. To address the problems of the mechanical characteristics and deformation control of the surrounding rock of the weakly cemented siltstone, we performed the field survey, laboratory tests, theoretical analysis by selecting Linchang coalmine in Guangxi Province of China as the engineering background. On-site investigations show that the roof rock layer of roadway has poor self-supporting ability, high failure rate of supporting structure due to water effect; large floor heave occurs affected by water and mining. The point load test indicates that the uniaxial compressive strength is only 1.9−2.3 MPa. Scanning with an electron microscope reveals that the weakly cemented siltstone is based on coarse-grained minerals. According to Protodyakonov’s pressure arch theory, we derived the equations of ultimate bearing capacity of roof and two sides and put forward the key points of weakly cemented roadway surrounding rock control, including improving the overall strength and bearing capacity of roadway surrounding rock, determining reasonable bolt support parameters, designing roof anchor cable to strengthen support. Based on the results of experimental analysis and theoretical research, we proposed a control plan based on grouting reinforcement, combined with bolts and cables, and carried out industrial tests in Linchang coalmine. The monitoring data show that the designed support scheme can effectively control the deformation of the weakly cemented siltstone roadway.

Key words: mining roadway, weakly cemented roof, surrounding rock stability, grouting reinforcement, combined support technology

中图分类号: 

  • TD353
[1] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[2] 肖明清, 徐晨, . 基于临界稳定断面的隧道围岩稳定性分析方法探讨[J]. 岩土力学, 2020, 41(5): 1690-1698.
[3] 谢亦朋, 杨秀竹, 阳军生, 张聪, 戴勇, 梁雄, 龚方浩, . 松散堆积体隧道围岩变形破坏细观特征研究[J]. 岩土力学, 2019, 40(12): 4925-4934.
[4] 刘泉声, 邓鹏海, 毕晨, 李伟伟, 刘军, . 深部巷道软弱围岩破裂碎胀过程及锚喷-注浆 加固FDEM数值模拟[J]. 岩土力学, 2019, 40(10): 4065-4083.
[5] 谷拴成,周 攀,黄荣宾. 锚杆–围岩承载结构支护下隧洞稳定性分析[J]. , 2018, 39(S1): 122-130.
[6] 王帅帅,高 波,范凯祥,申玉生,张 涛,. 平面P波入射下浅埋平行双洞隧道注浆加固减震机制[J]. , 2018, 39(2): 683-690.
[7] 胡明明,周 辉,张勇慧,张传庆,高 阳,胡大伟,李 震,. 宽断面预留墩柱沿空留巷墩柱支护阻力计算研究[J]. , 2018, 39(11): 4218-4225.
[8] 张妹珠,江 权,王雪亮,冯夏庭,钟 山,刘 畅, . 破裂大理岩锚注加固试样的三轴压缩试验及加固机制分析[J]. , 2018, 39(10): 3651-3660.
[9] 郑 卓,刘人太,李术才,王晓晨,张连震,王洪波. 基于Hoek-Brown准则的岩体注浆加固机制研究[J]. , 2017, 38(S1): 409-417.
[10] 江 贝,李术才,王 琦,王富奇,张若祥,. 基于上限法的深部大断面回采巷道顶板锚索设计方法研究[J]. , 2017, 38(8): 2351-2354.
[11] 孟庆彬,韩立军,张帆舸,张 建,聂军委,文圣勇,. 深部高应力软岩巷道耦合支护效应研究及应用[J]. , 2017, 38(5): 1424-1435.
[12] 王佳信,周宗红,赵 婷,余洋先,龙 刚,李春阳. 基于Alpha稳定分布概率神经网络的围岩稳定性分类研究[J]. , 2016, 37(S2): 649-657.
[13] 汪明武,朱其坤,赵奎元,蒋 辉,金菊良. 基于有限区间联系云的围岩稳定性评价模型[J]. , 2016, 37(S1): 140-144.
[14] 陈登红,华心祝,段亚伟,成世兴,. 深部大变形回采巷道围岩拉压分区变形破坏的模拟研究[J]. , 2016, 37(9): 2654-2662.
[15] 赵维生 ,韩立军 ,赵周能 ,孟庆彬 ,刘海泉,. 主应力对巷道交岔点围岩稳定性影响研究[J]. , 2015, 36(6): 1752-1760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[2] 张建国,张强勇,杨文东,张 欣. 大岗山水电站坝区初始地应力场反演分析[J]. , 2009, 30(10): 3071 -3078 .
[3] 颜天佑,李同春,赵兰浩,季薇薇. 三维边坡稳定分析的有限元弹塑性迭代解法[J]. , 2009, 30(10): 3102 -3108 .
[4] 李少龙,张家发,张 伟,肖 利. 表层土渗透系数空间变异与随机模拟研究[J]. , 2009, 30(10): 3168 -3172 .
[5] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .
[6] 刘玉成,庄艳华. 地下采矿引起的地表下沉的动态过程模型[J]. , 2009, 30(11): 3406 -3410 .
[7] 蔚立元,李术才,徐帮树. 舟山灌门水道海底隧道钻爆法施工稳定性分析[J]. , 2009, 30(11): 3453 -3459 .
[8] 方 勇,何 川. 土压平衡式盾构掘削面支护压力特性分析[J]. , 2009, 30(11): 3528 -3532 .
[9] 施锡林,李银平,杨春和,屈丹安,马洪岭. 盐穴储气库水溶造腔夹层垮塌力学机制研究[J]. , 2009, 30(12): 3615 -3620 .
[10] 李利平,李术才,崔金声. 岩溶突水治理浆材的试验研究[J]. , 2009, 30(12): 3642 -3648 .