岩土力学 ›› 2022, Vol. 43 ›› Issue (1): 277-285.doi: 10.16285/j.rsm.2021.0890

• 数值分析 • 上一篇    下一篇

落石冲击混凝土棚洞力学特性研究

陈泰江1,章广成1,向欣2   

  1. 1. 中国地质大学(武汉)工程学院,湖北 武汉 430074;2. 中国长江三峡集团有限公司,北京 100038
  • 收稿日期:2021-06-14 修回日期:2021-09-08 出版日期:2022-01-10 发布日期:2022-01-07
  • 通讯作者: 章广成,男,1980年生,博士,教授,博士生导师,主要从事岩土体稳定性评价与防治方面的教学与研究工作。E-mail: zhangguangc@foxmail.com E-mail:Chendjiang@cug.edu.cn
  • 作者简介:陈泰江,男,1995年生,博士研究生,主要从事岩土工程力学方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 41877263);国家重点研发计划项目(No. 2018YFC1505306)

Investiagtions on mechanical characteristics of rockfall impact on concrete shed cave

CHEN Tai-jiang1, ZHANG Guang-cheng1, XIANG Xin2   

  1. 1. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China; 2. China Three Gorges Corporation Limited, Beijing 100038, China
  • Received:2021-06-14 Revised:2021-09-08 Online:2022-01-10 Published:2022-01-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41877263) and the National Key R&D Program Project (2018YFC1505306).

摘要: 落石冲击棚洞结构作用过程复杂,缺乏统一的落石冲击力表达式。首先,将落石简化为刚性球体,基于Hertz接触理论,推导得到落石冲击力半正弦算法的理论表达式,考虑落石冲击下棚洞的非弹性特征,根据落石与材料碰撞过程中落石加速度曲线特征,采用函数拟合法推导得到落石法向冲击下其冲击力的理论计算方法;然后,基于ANSYS/LS-DYNA软件建立落石冲击棚洞数值计算模型,研究不同冲击速度下落石冲击棚洞动力特征;最后,与现存常见的多种方法进行对比,得出以下结论:Hertz半正弦法得到的落石冲击力远大于函数拟合法和数值法,而函数拟合法和数值法得到的落石冲击力时程曲线相接近,表明函数拟合法更能反映落石与棚洞接触碰撞动力关系;对比其他计算方法可以得到,Hertz算法适用于分析无能量损失下的弹性碰撞问题,而Logistic算法适用于材料大塑性变形的情况,弹塑性接触理论结果和动力有限元结果存在差异,而采用函数拟合推导的计算方法得到的落石最大冲击力和落石冲击作用时间与动力有限元法更接近,更能反映落石冲击棚洞动力响应特征,推导的落石冲击力计算方法可为工程实践中棚洞防护设计提供理论参考。

关键词: 落石, 接触理论, 冲击力, 冲击时间, ANSYS/LS-DYNA

Abstract: The impact of rockfall on the shed cave structure is complicated and lacks a unified expression of rockfall impact force. First of all, the falling rock is simplified into a rigid sphere, the theoretical expression of the rockfall impact force is derived using half-sine algorithm based on the Hertz contact theory. Considering the inelastic characteristics of rockfall impact on shed cave, the method of function fitting is used to calculate the impact force of rockfall under normal impact according to the characteristics of the rockfall acceleration curve during the collision between the rock and the material, and then a numerical calculation model of the rockfall impact on shed cave is established to study the dynamic characteristics of the rockfall impact on shed cave at different impact speeds based on ANSYS/LS-DYNA software. Finally, compared with the existing common methods, some conclusions are drawn. The impact force of rockfall obtained by Hertz half sine method is much larger than that obtained by function fitting method and numerical method, and the time-history relationship of rockfall impact force obtained by function fitting method in this paper is close to that obtained by numerical method. It indicats that function fitting method can better reflect the dynamic relationship of the collision between the falling rock and the shed cave. Compared with other calculation methods, it can be obtained that the Hertz algorithm is suitable for analyzing the elastic collision problem without energy loss, and the Logistic algorithm is suitable for the situation of large plastic deformation of the material. There are differences between the elastoplastic contact theory results and the dynamic finite element results, and the maximum impact force and the impact time of the rockfall obtained by the calculation method derived from the function fitting are closer to the dynamic finite element method, and it can better reflect the dynamic response characteristics of the rockfall impact on the shed. The calculation method of rockfall impact force deduced in this paper can provide theoretical reference for the design of protection measures in practical engineering.

Key words: rockfall, contact theory, impact force, impact time, ANSYS/LS-DYNA

中图分类号: 

  • U 451,P 642.2
[1] 姬中民, 唐一举, 伍法权, 刘静, 陈天立, 陈志坚. 落石形状和尺寸对恢复系数影响的室内试验研究[J]. 岩土力学, 2021, 42(3): 665-672.
[2] 叶阳, 曾亚武, 杜欣, 孙翰卿, 陈曦, . 球形砾石碰撞损伤破碎三维离散元模拟研究[J]. 岩土力学, 2020, 41(S1): 368-378.
[3] 程亮, 许江, 周斌, 彭守建, 闫发志, 杨孝波, 杨文健. 不同瓦斯压力对煤与瓦斯突出两相流 传播规律的影响研究[J]. 岩土力学, 2020, 41(8): 2619-2626.
[4] 王东坡, 张小梅. 泥石流冲击弧形拦挡坝动力响应研究[J]. 岩土力学, 2020, 41(12): 3851-3861.
[5] 王友彪, 姚昌荣, 刘赛智, 李亚东, 张 迅. 泥石流对桥墩冲击力的试验研究[J]. 岩土力学, 2019, 40(2): 616-623.
[6] 肖思友, 苏立君, 姜元俊, 李丞, 刘振宇, . 坡度对碎屑流冲击立式拦挡墙力学特征的影响[J]. 岩土力学, 2019, 40(11): 4341-4351.
[7] 胡 杰,李术才,石少帅,李利平,刘进佩,刘洪亮,贺 鹏. 隧道仰坡落石冲击模型试验研究与机制探讨[J]. , 2018, 39(7): 2527-2536.
[8] 曾 超 ,苏志满 ,雷 雨 ,余 健,. 泥石流浆体与大颗粒冲击力特征的试验研究[J]. , 2015, 36(7): 1923-1930.
[9] 袁进科,黄润秋,裴向军. 滚石冲击力测试研究[J]. , 2014, 35(1): 48-54.
[10] 何思明,沈 均,吴 永. 滚石冲击荷载下棚洞结构动力响应[J]. , 2011, 32(3): 781-788.
[11] 杨海清,周小平. 边坡落石运动轨迹计算新方法[J]. , 2009, 30(11): 3411-3416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .