岩土力学 ›› 2023, Vol. 44 ›› Issue (6): 1748-1760.doi: 10.16285/j.rsm.2022.1069

• 基础理论与实验研究 • 上一篇    下一篇

明棚洞落石冲击荷载计算方法研究

冉龙洲1,袁松1, 2,王希宝1,王峥峥3,张生1   

  1. 1. 四川省交通勘察设计研究院有限公司,四川 成都 610017;2. 西南交通大学 土木工程学院,四川 成都 610031; 3. 大连理工大学 土木工程学院,辽宁 大连 116024
  • 收稿日期:2022-07-08 接受日期:2022-10-11 出版日期:2023-06-14 发布日期:2023-06-17
  • 通讯作者: 袁松,男,1983年生,硕士,正高级工程师,主要从事隧道工程、防护工程的设计及研究工作。E-mail: stevenyuan@163.com E-mail:ranlongzhou1988@126.com
  • 作者简介:冉龙洲,男,1988年生,硕士,高级工程师,主要从事隧道及地下结构相关的设计及研究工作。
  • 基金资助:
    交通运输行业重点科技项目(No.2020-MS3-101);四川省交通运输科技项目(No.2020-B-01)

A method for calculating rockfall impact load on shed tunnel

RAN Long-zhou1, YUAN Song1, 2, WANG Xi-bao1, WANG Zheng-zheng3, ZHANG Sheng1   

  1. 1. Sichuan Communication Surveying and Design Institute Co., Ltd., Chengdu, Sichuan 610017, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. School of Civil Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2022-07-08 Accepted:2022-10-11 Online:2023-06-14 Published:2023-06-17
  • Supported by:
    This work was supported by the Key Science and Technology Project in Transportation Industry(2020-MS3-101) and the Sichuan Transportation Science and Technology Project(2020-B-01)

摘要: 根据落石冲击回填土明棚洞过程中的基本力学和运动学规律,采用Laplace变换,从落石冲击半无限土体、落石冲击有限厚度土体、考虑回填土与下部结构相互作用3个方面推导了落石冲击荷载的理论计算公式,通过数值模拟和相关试验数据对理论公式进行了验证,并与目前常见落石冲击荷载计算公式进行了对比研究。研究表明:所提出的公式理论计算结果与数值模拟结果和相关试验结果均有较稳定的规律,理论计算值比数值模拟值大6%~41%,与Pichler现场试验的95%分位值差值仅在6%以内;尽管所提出的公式计算值比目前所有公式计算结果均偏大,但与数值模拟和试验数据更吻合,更能反映出真实的落石冲击荷载;所提出的计算公式可以反映缓冲层厚度和缓冲层性质的影响,缓冲层厚度越小,落石冲击荷载越大,缓冲层厚度影响系数可根据h/r查表确定;缓冲层和结构的动力相互作用导致结构承受冲击荷载相较缓冲层顶部冲击荷载增大,结构动力放大系数与缓冲层厚度相关,缓冲层厚度越大,结构动力放大系数越小。所提出的计算公式可以反映落石大小、落石形状、落石冲击能量、缓冲层厚度、缓冲层性质等因素对冲击荷载的影响,计算荷载值可直接用于明棚洞结构设计。

关键词: 落石冲击荷载, Laplace变换, 明(棚)洞, 半无限土体, 厚度影响放大系数, 动力放大系数

Abstract: According to the basic mechanics and kinematics laws of rockfall impacting backfilling shed tunnel, the theoretical calculation formula of rockfall impact load is derived from three aspects using Laplace transform: rockfall impacting semi-infinite backfill, rockfall impacting finite thick backfill, and considering the interaction between backfill and substructure. The theoretical formula is verified by numerical simulation and relevant test data, and is compared with the other calculation formulae. The research shows that the theoretical value obtained from the proposed formula and the results of numerical simulation and laboratory tests all have a relatively stable law. The theoretical values are 6%−41% larger than the numerical values, and the difference between the theoretical value and the 95th percentile value of Pichler test is within 6%. Although the theoretical value in this paper is larger than that of all the other formulae, it is more consistent with numerical data and test data, thus it can better represent the real rockfall impact load. The formula can reflect the influences of thickness and properties of backfill, i.e. the smaller the thickness of backfill, the greater the impact load, and the thickness amplification factor can be determined according to the h/r table. The dynamic interaction between the backfill and the structure leads to the increase of the impact load on structure, which can be defined as dynamic amplification factor; the larger the thickness of backfill, the smaller the dynamic amplification factor. The proposed theoretical formula can consider the influence of many factors such as rockfall size, rockfall shape, rockfall energy, and thickness and properties of backfill. Therefore, the theoretical value can be used to design structure of shed tunnel directly.

Key words: rockfall impact load, Laplace transform, shed tunnel, semi-infinite backfill, thickness amplification factor, dynamic amplification factor

中图分类号: 

  • U453
[1] 王滢, 王海萍, 高盟, . 非饱和土中圆柱形衬砌隧道的瞬态动力响应[J]. 岩土力学, 2022, 43(11): 3185-3197.
[2] 孙德安, 薛垚, 汪磊, . 变荷载作用下考虑半透水边界热传导性的 一维饱和土热固结特性研究[J]. 岩土力学, 2020, 41(5): 1465-1473.
[3] 熊 辉,江雅丰,禹荣霞. 层状地基中基于Laplace变换的桩基横向振动阻抗计算[J]. , 2018, 39(5): 1901-1907.
[4] 刘忠玉,杨 强. 基于分数阶Kelvin模型的饱和黏土一维流变固结分析[J]. , 2017, 38(12): 3680-3687.
[5] 王 滢 ,高广运,. 饱和半空间瞬态加载衬砌隧道的动力响应研究[J]. , 2016, 37(3): 850-858.
[6] 杨 骁,周 磊,张 敏. 爆炸荷载作用下深埋圆形隧洞的饱和黏弹性土-衬砌系统动力响应[J]. , 2015, 36(7): 2013-2020.
[7] 徐 平 ,李小春 ,周新民,. 瓦斯抽采过程中孔壁的动态响应分析[J]. , 2015, 36(1): 123-130.
[8] 王 健,周风华. 采用Laplace变换分析桩基应力波传播问题[J]. , 2011, 32(1): 179-185.
[9] 张 文,王泽文,乐励华. 双重介质中的一类核素迁移数学模型及其反演[J]. , 2010, 31(2): 553-558.
[10] 艾智勇,王全胜. 多层横观各向同性地基轴对称固结的传递矩阵解[J]. , 2009, 30(4): 921-925.
[11] 耿雪玉,蔡袁强,徐长节. 复杂荷载作用下考虑下卧层三维渗流的未打穿竖井地基固结分析[J]. , 2008, 29(6): 1521-1529.
[12] 徐长节,耿雪玉,蔡袁强. 任意荷载下欠固结地基的非线性一维固结[J]. , 2006, 27(3): 389-394.
[13] 潘晓东 ,蔡袁强 ,徐长节 ,张云峰 . 循环荷载下黏弹性饱和土层的一维固结[J]. , 2006, 27(2): 272-276.
[14] 王新辉 ,缪林昌 ,高健康 ,赵 亻黾. Laplace变换解双层地基固结问题[J]. , 2005, 26(5): 833-836.
[15] 方 晔,徐长节,蔡袁强. Gibson地基的一维固结解[J]. , 2003, 24(6): 913-916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .