›› 2008, Vol. 29 ›› Issue (10): 2731-2734.

• 基础理论与实验研究 • 上一篇    下一篇

振动频率对LCES动力特性的影响分析及其机理初探

黎 冰1-3,高玉峰1, 2,丰土根1, 2   

  1. 1.岩土力学与堤坝工程教育部重点实验室,南京 210098;2.河海大学 岩土工程研究所,南京 210098;3.东南大学 土木工程学院,南京 210096
  • 收稿日期:2007-03-14 出版日期:2008-10-10 发布日期:2013-08-03
  • 作者简介:黎冰,男,1981年生,博士,主要从事土动力特性方面的研究。
  • 基金资助:

    国家自然科学基金项目(No. 50479020);江苏省青蓝工程项目;教育部留学回国人员基金项目资助。

Cyclic loading frequency effect and mechanism of lightweight clay-EPS beads soil

LI Bing1-3, GAO Yu-feng1, 2, Feng Tu-gen1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; 2. Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China; 3. College of Civil Engineering, Southeast University, Nanjing 210096, China
  • Received:2007-03-14 Online:2008-10-10 Published:2013-08-03

摘要: 通过室内动三轴试验研究了0.02 Hz,0.1 Hz,1.0 Hz 3种振动频率对黏土与EPS颗粒混合轻质土(LCES)动力特性的影响。结果表明,振动频率对LCES的动力特性有明显的影响,当振动频率在0.02~1.0 Hz范围内变化时,随着振动频率的降低,试样的轴向动应变和阻尼比增大,动强度和动模量减小。和小频率加载相比,大频率加载情况下的孔压发展较慢,即有效应力相对较大,所以动应变越小而动强度越大。最后,从平均加载速率的概念出发,讨论了振动频率对土动力特性的影响。

关键词: 黏土与EPS颗粒混合轻质土, 动三轴试验, 振动频率, 动力特性, 机理

Abstract: Based on a series of dynamic triaxial tests in which the frequency is equals to 0.02 Hz, 0.1 Hz, 1.0 Hz, the effect of cyclic loading frequency on the lightweight clay mixed with EPS beads soil (LCES) is investigated. The results of dynamic triaxial tests show that the cyclic loading frequency has obvious effect on the LCES, with the decreasing cyclic loading frequency, axial strain and damping ratio increase, dynamic strength and dynamic modulus decrease when cyclic loading frequency equals to 0.02-1.0 Hz. Compared with high cyclic loading frequency, the pore water pressure at low cyclic loading frequency develops more quickly, and the effective confining pressure of LCES decreases quickly at the same time, which leads to the destruction of LCES, so the dynamic strain increases and the dynamic strength decreases accordingly.

Key words: lightweight clay-EPS beads soil, dynamic triaxial test, cyclic loading frequency, dynamic properties, mechanism

中图分类号: 

  • TU 435
[1] 梁 珂, 陈国兴, 何 杨, 刘景儒, . 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4): 1368-1376.
[2] 裴向军, 朱 凌, 崔圣华, 张晓超, 梁玉飞, 高会会, 张子东. 大光包滑坡层间错动带液化特性及 滑坡启动成因探讨[J]. 岩土力学, 2019, 40(3): 1085-1096.
[3] 黄珏皓, 陈 健, 孔令智, 刘府生, 柯文汇, 邱岳峰, 李健斌, . 考虑循环围压与振动频率影响的 饱和软黏土动力特性试验研究[J]. 岩土力学, 2019, 40(1): 173-182.
[4] 杨爱武,胡 垚. 新型城市污泥固化土工程特性及微观机理[J]. , 2018, 39(S1): 69-78.
[5] 赵子江,刘大安,崔振东,唐铁吾,韩伟歌,. 半圆盘三点弯曲法测定页岩断裂韧度(KIC) 的实验研究[J]. , 2018, 39(S1): 258-266.
[6] 李 宣, 孙德安,张俊然,. 吸力历史对非饱和粉土动力变形特性的影响[J]. , 2018, 39(8): 2829-2836.
[7] 年廷凯,焦厚滨,范 宁,郭兴森,贾永刚,. 南海北部陆坡软黏土动力应变-孔压特性试验[J]. , 2018, 39(5): 1564-1572.
[8] 张修照,巫尚蔚,张 超,杨春和,. 不同固结条件下尾矿动孔压演化规律[J]. , 2018, 39(3): 815-822.
[9] 任非凡, 何江洋, 王 冠, 赵其华, . 基于交变移动本构模型的粗粒土 动力特性数值解析[J]. 岩土力学, 2018, 39(12): 4627-4641.
[10] 黄 娟,丁祖德,袁铁映,赵 丹,彭立敏,. 循环荷载作用下泥炭质土的动变形特性试验研究[J]. , 2017, 38(9): 2551-2558.
[11] 刘汉龙,刘 平,杨 贵,肖 杨,刘彦辰,. 高聚物胶凝堆石料动残余变形特性试验研究[J]. , 2017, 38(7): 1863-1868.
[12] 詹金武,李 涛. 破碎泥岩注浆结石体动力特性的SHPB试验及其数值模拟研究[J]. , 2017, 38(7): 2096-2102.
[13] 贾艳昌,谢谟文,昌圣翔,吕夫侠. 基于固有振动频率的滑移式和坠落式危岩块体稳定性评价模型研究[J]. , 2017, 38(7): 2149-2156.
[14] 李 博,黄茂松,. 掺有橡胶粉末砂土液化特性的动三轴试验研究[J]. , 2017, 38(5): 1343-1349.
[15] 杨爱武,孔令伟,郭 飞,. 天津滨海软黏土动力累积塑性变形特性与增长模型[J]. , 2017, 38(4): 979-984.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 关云飞,高 峰,赵维炳,俞 缙. ANSYS软件中修正剑桥模型的二次开发[J]. , 2010, 31(3): 976 -980 .
[2] 米海珍,高 春. 生石灰膨胀特性的试验研究[J]. , 2010, 31(4): 1253 -1256 .
[3] 何先龙,赵立珍. 基于多重互相关函数分析剪切波速[J]. , 2010, 31(8): 2541 -2545 .
[4] 张玉成,杨光华,姜 燕,姚 捷,史永胜. 沉管隧道基槽爆破施工对既有堤岸稳定性影响的数值仿真分析[J]. , 2010, 31(S1): 349 -356 .
[5] 宋 飞,刘 超,张建民,郑瑞华. 离心模型挡土墙试验设备的研制[J]. , 2010, 31(9): 3005 -3011 .
[6] 孙熙平,张宝华,张 强,王笑难. 重力式码头基床遭水流冲刷后的稳定性分析[J]. , 2010, 31(10): 3184 -3190 .
[7] 张卢明,郑明新,何 敏. 滑坡防治前后滑带土基质吸力特征研究[J]. , 2010, 31(10): 3305 -3312 .
[8] 肖 琳,杨成奎,胡增辉,李晓昭,李 茉. 地铁隧道围岩内温度分布规律的模型试验及其热导率反算研究[J]. , 2010, 31(S2): 86 -91 .
[9] 陈敬虞,龚晓南,邓亚虹. 软黏土层一维有限应变固结的超静孔压消散研究[J]. , 2009, 30(1): 191 -195 .
[10] 姚华彦,冯夏庭,崔 强,申林方,周 辉,程昌炳. 化学侵蚀下硬脆性灰岩变形和强度特性的试验研究[J]. , 2009, 30(2): 338 -344 .