›› 2005, Vol. 26 ›› Issue (9): 1481-1484.

• 基础理论与实验研究 • 上一篇    下一篇

软土路基沉降实时建模动态预测

肖武权,冷伍明   

  1. 中南大学 土木建筑学院,长沙 410075
  • 收稿日期:2004-03-24 出版日期:2005-09-10 发布日期:2013-12-30
  • 作者简介:肖武权,男,1962年生,博士,副教授,主要从事岩土工程与工程地质教学与科研工作
  • 基金资助:

    湖南省交通厅科技发展项目(No. 200113)

Real-time modeling and dynamic predicting of settlement of soft soil roadbeds

XIAO Wu-quan, LENG Wu-ming   

  1. School of Civil and Architectural Engineering, Central South University, Changsha 410075, China
  • Received:2004-03-24 Online:2005-09-10 Published:2013-12-30

摘要: 在路基填筑施工过程中,用多项式与时间序列AR组合模型预测其沉降变形发展。根据沉降观测值,采用统计分析方法识别和建立多项式预测模型,预测在某时期沉降趋势值;用平稳时间序列分析方法建立随机部分模型,并预测沉降随机部分值,二者之和即为某时期沉降预测值。随着新观测数据的不断加入,及时修改预测模型参数值,达到实时预测之目的。工程实例研究表明:组合模型预测值明显优于单一趋势模型预测值。组合模型一步预测误差绝对值大多数情况下小于5 mm。预测步数越多,预测误差则越大。

关键词: 沉降, 动态预测, 多项式与AR组合模型

Abstract: During the filling construction of the soft soil roadbed, the total settlement value could be predicted by using polynomial and time-series combined model. On the basis of measured settlement data, the polynomial prediction model could be discriminated and established by statistics; and the settlement trend value at a certain future time would be predicted. The random settlement could be gotten by random prediction model that is established by smooth and stable time series analysis method. The sum of above two prediction values is the settlement prediction value of the roadbed at some certain time. With the addition of new settlement data, the model parameters are continuously modified. The practical settlement prediction of the soft soil roadbed shows that the combined model is superior to the single polynomial model; and the absolute error value between measure and one-step prediction value is mostly below 5 cm. The more prediction step is, the greater error is.

Key words: settlement, dynamic prediction, polynomial and time series combined model

中图分类号: 

  • TU 433
[1] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[2] 张治国, 张瑞, 黄茂松, 宫剑飞, . 基于差异沉降和轴向刚度控制的竖向荷载作用下群桩基础优化分析[J]. 岩土力学, 2019, 40(6): 2354-2368.
[3] 王 胤, 周令新, 杨 庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型 及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015.
[4] 刘念武, 陈奕天, 龚晓南, 俞济涛, . 软土深开挖致地铁车站基坑及 邻近建筑变形特性研究[J]. 岩土力学, 2019, 40(4): 1515-1525.
[5] 刘成禹, 张 翔, 程 凯, 陈博文, . 地下工程涌水涌砂诱发的沉降试验研究[J]. 岩土力学, 2019, 40(3): 843-851.
[6] 谭国宏, 肖海珠, 杜 勋, 胡文军. 大跨度公铁合建斜拉桥主塔沉井基础沉降变形分析[J]. 岩土力学, 2019, 40(3): 1113-1120.
[7] 徐 鹏, 蒋关鲁, 任世杰, 田鸿程, 王智猛, . 红层泥岩及其改良填料路基动力响应试验研究[J]. 岩土力学, 2019, 40(2): 678-683.
[8] 钟国强, 王 浩, 李 莉, 王成汤, 谢壁婷, . 基于SFLA-GRNN模型的基坑地表最大沉降预测[J]. 岩土力学, 2019, 40(2): 792-798.
[9] 费 康, 戴 迪, 洪 伟, . 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70-80.
[10] 王建军, 陈福全, 李大勇. 低填方加筋路基沉降的Kerr模型解[J]. 岩土力学, 2019, 40(1): 250-259.
[11] 杜伟飞, 郑建国, 刘争宏, 张继文, 于永堂, . 黄土高填方地基沉降规律及排气条件影响[J]. 岩土力学, 2019, 40(1): 325-331.
[12] 杨公标, 张成平, 闵 博, 蔡 义, . 浅埋含空洞地层圆形隧道开挖引起的位移 复变函数弹性解[J]. 岩土力学, 2018, 39(S2): 25-36.
[13] 朱 宁,周 洋,刘 维,史培新,吴 奔, . 苏州粉土地层地连墙施工对地层扰动影响研究[J]. , 2018, 39(S1): 529-536.
[14] 吴 野,王 胤,杨 庆. 考虑钙质砂细观颗粒形状影响的液体拖曳力系数试验[J]. , 2018, 39(9): 3203-3212.
[15] 任连伟,周桂林,顿志林,何停印,杨权威,张敏霞,. 采空区建筑地基适宜性及沉降变形计算工程实例分析[J]. , 2018, 39(8): 2922-2932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[2] 董 诚,郑颖人,陈新颖,唐晓松. 深基坑土钉和预应力锚杆复合支护方式的探讨[J]. , 2009, 30(12): 3793 -3796 .
[3] 任 松,姜德义,杨春和,藤宏伟. 共和隧道开裂段页岩蠕变本构试验及离散元数值模拟研究[J]. , 2010, 31(2): 416 -421 .
[4] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[5] 马文涛. 基于灰色最小二乘支持向量机的边坡位移预测[J]. , 2010, 31(5): 1670 -1674 .
[6] 高志华,赖远明,熊二刚,李 波. 循环荷载作用下高温-高含冰量冻土特性试验研究[J]. , 2010, 31(6): 1744 -1751 .
[7] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[8] 沈银斌,朱大勇,汪鹏程,姚华彦. 基于数值应力场的边坡临界滑动场[J]. , 2010, 31(S1): 419 -423 .
[9] 王协群,张有祥,邹维列,熊海帆. 降雨入渗条件下非饱和路堤变形与边坡的稳定数值模拟[J]. , 2010, 31(11): 3640 -3644 .
[10] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .