岩土力学 ›› 2019, Vol. 40 ›› Issue (4): 1515-1525.doi: 10.16285/j.rsm.2018.0116

• 岩土工程研究 • 上一篇    下一篇

软土深开挖致地铁车站基坑及 邻近建筑变形特性研究

刘念武1, 2, 3,陈奕天1,龚晓南2,俞济涛3   

  1. 1. 浙江理工大学 建筑工程学院,浙江 杭州 310018;2. 浙江大学 滨海与城市岩土工程研究中心,浙江 杭州 310058; 3. 中国中铁二院工程集团有限责任公司,四川 成都 610031
  • 收稿日期:2018-01-18 出版日期:2019-04-11 发布日期:2019-04-28
  • 作者简介:刘念武,男,1987年生,博士,讲师,硕士生导师,主要从事基坑工程、桩基工程的教学及科研工作。
  • 基金资助:
    浙江省科技厅公益技术研究项目(No. 2016C33020);国家自然科学基金(No. 51608485);浙江省“151”人才培养计划

Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil

LIU Nian-wu1, 2, 3, CHEN Yi-tian1, GONG Xiao-nan2, YU Ji-tao3   

  1. 1. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China; 2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. China Railway Eryuan Engineering Group Co., Ltd., Chengdu, Sichuan 610031, China
  • Received:2018-01-18 Online:2019-04-11 Published:2019-04-28
  • Supported by:
    This work was supported by the Research Fund for Commonwealth-Orientated Technology of Zhejiang Province (2016C33020), the National Natural Science Foundation of China (51608485) and the 151 Talents Project of Zhejiang Province.

摘要: 为了更深入地了解软土深开挖引起地铁车站深基坑工程围护结构及邻近建筑的变形特性,结合深厚软黏土地区某个地铁车站深基坑工程进行了系统性监测及结果分析。结果分析表明:地连墙成槽会引起邻近土体侧向位移,最大土体侧向位移值占基坑开挖期间土体侧向位移值20%左右;土体开挖期间南侧(桩基础建筑一侧)、北侧(浅基础建筑一侧)围护结构邻近土体最大侧向位移平均值分别为0.091% He和0.120% He;y/He值(y为垂直连续墙方向上与连续墙的距离,He为开挖深度)小于0.92时,基坑开挖引起土体沉降值及沉降差较大;地表变形与浅基础变形较为接近,桩基础建筑变形值明显小于浅基础建筑变形值且嵌岩桩基础建筑变形值最小;邻近浅基础建筑及桩基础建筑均受到空间效应影响,在x/He值(x为平行连续墙方向上与端部的距离)小于1.5时,空间效应较为明显,x/He值大于2.0时,邻近建筑及围护结构邻近土体变形接近平面应变状态。

关键词: 地铁车站, 深基坑, 建筑, 沉降, 空间效应

Abstract: In order to obtain a deeper understanding of the deformation characteristics of the retaining structure and the adjacent buildings of deep foundation pit of metro station caused by deep excavation in soft soil, systematic monitoring and result analysis of deep foundation pit engineering of a metro station in deep soft clay area were carried out. It was found that grooving of diaphragm wall will cause lateral displacement of adjacent soil. The maximum lateral displacement of soil accounts for about 20% of the lateral displacement of soil during excavation of foundation pit. The average values of maximum lateral displacement of the retaining wall on the south side (namely the side of the pile foundation buildings) and the north side (namely the side of the shallow foundation buildings) during soil excavation were 0.091% He and 0.120% He, respectively. When the value of y/He ( y is the distance between vertical continuous wall direction and diaphragm wall, and He is the excavation depth) is less than 0.92, the magnitude of the settlement and differential settlement induced by excavation was relatively larger. The settlement of the ground surface was close to that of the shallow foundation settlement, while the settlement of the pile foundation was obviously less than that of the shallow foundation building among which the rock-socketed pile foundation building had the smallest deformation value. Both the shallow foundation buildings and pile foundation buildings were affected by spatial effect which was more obvious when the value of x/He (x, the distance from the corner in the longitudinal direction) was less than 1.5. When the value of x/He was greater than 2.0, the soil deformation near the adjacent buildings and retaining structures approached to a plane strain state.

Key words: metro station, deep excavation, buildings, settlement, spatial effect

中图分类号: 

  • TU 473
[1] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[2] 王成汤, 王浩, 覃卫民, 钟国强, 陈舞, . 基于多态模糊贝叶斯网络的地铁车站 深基坑坍塌可能性评价[J]. 岩土力学, 2020, 41(5): 1670-1679.
[3] 周恩全, 宗之鑫, 王琼, 陆建飞, 左熹. 橡胶-粉土轻质混合土中管道动力响应特性[J]. 岩土力学, 2020, 41(4): 1388-1395.
[4] 徐进, 王少伟, 杨伟涛. 水位变化下可压缩土层的黏弹性耦合变形分析[J]. 岩土力学, 2020, 41(3): 1065-1073.
[5] 贺志军, 雷皓程, 夏张琦, 赵炼恒. 多层软土地基中单桩沉降与内力位移分析[J]. 岩土力学, 2020, 41(2): 655-666.
[6] 刘成禹, 陈博文, 罗洪林, 阮家椿, . 满流条件下管道破损诱发渗流侵蚀的试验研究[J]. 岩土力学, 2020, 41(1): 1-10.
[7] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[8] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[9] 卢谅, 石通辉, 杨东, . 置换减载与加筋复合处理方法对路基不 均匀沉降控制效果研究[J]. 岩土力学, 2019, 40(9): 3474-3482.
[10] 张治国, 黄茂松, 杨 轩, . 基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.
[11] 杜文, 王永红, 李利, 朱连臣, 朱浩天, 王有旗, . 双层车站密贴下穿既有隧道案例分析及 隧道沉降变形特征[J]. 岩土力学, 2019, 40(7): 2765-2773.
[12] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[13] 张治国, 张瑞, 黄茂松, 宫剑飞, . 基于差异沉降和轴向刚度控制的竖向荷载作用下群桩基础优化分析[J]. 岩土力学, 2019, 40(6): 2354-2368.
[14] 谷淡平, 凌同华, . 悬臂式型钢水泥土搅拌墙的水泥土 承载比和墙顶位移分析[J]. 岩土力学, 2019, 40(5): 1957-1965.
[15] 王 胤, 周令新, 杨 庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型 及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!