岩土力学 ›› 2019, Vol. 40 ›› Issue (8): 3135-3144.doi: 10.16285/j.rsm.2018.0913

• 岩土工程研究 • 上一篇    下一篇

基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解

张治国1, 2, 3,黄茂松4,杨 轩1   

  1. 1. 上海理工大学 环境与建筑学院,上海 200093;2. 中国铁道科学研究院 高速铁路轨道技术国家重点实验室,北京 100081; 3. 中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116;4. 同济大学 地下建筑与工程系,上海 200092
  • 收稿日期:2018-05-25 出版日期:2019-08-12 发布日期:2019-08-25
  • 作者简介:张治国,男,1978年生,博士,博士后,副教授,主要从事地下工程施工对周边环境影响控制方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51738010, No. 41772331);中国矿业大学深部岩土力学与地下工程国家重点实验室基金项目(No. SKLGDUEK1707);高速铁路轨道技术国家重点实验室基金项目(No. 2018YJ181)。

Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage

ZHANG Zhi-guo1, 2, 3, HUANG Mao-song4, YANG Xuan1   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. State Key Laboratory for Track Technology of High-speed Railway, China Academy of Railway Sciences, Beijing 100081, China; 3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 4. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-05-25 Online:2019-08-12 Published:2019-08-25
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51738010, 41772331), the Project Program of State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (SKLGDUEK1707) and the Project of State Key Laboratory for Track Technology of High-speed Railway(2018YJ181)

摘要: 基于Terzaghi-Rendulic固结理论,采用保角映射和分离变量法,计算得到隧道衬砌半渗透漏水边界条件下,盾构施工扰动引起的隧道周围土体超孔隙水压力消散解和地表土体固结沉降,通过工程实例进行验证,发现理论方法与实测数据趋势一致;此外,利用参数分析获得了土体固结沉降和超孔隙水压力的分布影响规律。结果表明:衬砌与土体的相对渗透比越大,固结沉降的初始速率越大,但不影响最终收敛值;土体弹性模量越小,最终固结沉降量越大;土体中超孔隙水压力随着时间增加,在隧道开挖后较短时间里以较大幅度逐渐消散,消散到约为初始值的1/10时减幅放缓;距离衬砌外壁越远,土体初始超孔隙水压力越小,其消散速度也越慢。

关键词: 隧道, 渗漏水, 超孔隙水压力消散, 土体固结沉降, 保角映射

Abstract: Considering semi-permeable boundary condition and Terzaghi-Rendulic consolidation theory, the dissipation solution of excess pore water pressure and the ground surface consolidation settlement are obtained by using the conformal mapping and separation variable method. The analytical results are compared with the measured results from project cases, which shows good agreement. In addition, the influence laws of the soil consolidation settlement and the excess pore water pressure are obtained via the parameter analysis. The results show that the larger the permeable ratio of soil and lining is, the larger the initial rate of consolidation settlement is, but it has no influence on the final convergence value. The smaller the elastic modulus of soil is, the larger the final consolidation settlement is. The excess pore water pressure gradually increases with time, while it dissipates on a large scale in a short time after the excavation of the tunnel. The speed becomes slow when the value reaches to about one-tenth of the initial value. The longer the distance to the lining is, the smaller the initial excess pore water pressure is, and the slower the corresponding dissipation speed is.

Key words: tunnel, leakage, dissipation of excess pore water pressure, soil consolidation settlement, conformal mapping

中图分类号: 

  • TU 457
[1] 徐日庆, 程康, 应宏伟, 林存刚, 梁荣柱, 冯苏阳, . 考虑埋深与剪切效应的基坑卸荷下卧 隧道的形变响应[J]. 岩土力学, 2020, 41(S1): 195-207.
[2] 郑刚, 栗晴瀚, 程雪松, 哈达, 赵悦镔. 承压层快速减压与回灌应用于隧道抢险的理论与设计[J]. 岩土力学, 2020, 41(S1): 208-216.
[3] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[4] 房昱纬, 吴振君, 盛谦, 汤华, 梁栋才, . 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503.
[5] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[6] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[7] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[8] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[9] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[10] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[11] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[12] 郑立夫, 高永涛, 周喻, 田书广. 基于流固耦合理论水下隧道冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(3): 1029-1038.
[13] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[14] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[15] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!