岩土力学 ›› 2019, Vol. 40 ›› Issue (7): 2765-2773.doi: 10.16285/j.rsm.2018.1636

• 岩土工程研究 • 上一篇    下一篇

双层车站密贴下穿既有隧道案例分析及 隧道沉降变形特征

杜文1,王永红1,李利2,朱连臣3,朱浩天3,王有旗3   

  1. 1. 北京交通大学 城市地下工程教育部重点实验室,北京 100044;2. 中铁第六勘察设计院集团有限公司,天津 300308; 3. 中铁二十五局集团第五工程有限公司,山东 青岛 266000
  • 收稿日期:2018-09-04 出版日期:2019-07-11 发布日期:2019-07-28
  • 通讯作者: 王永红,男,1958年生,博士,教授,博士生导师,主要从事隧道与地下工程的科研、教学和工程开发工作。E-mail: yonghongw@163.com E-mail: duwenkadn@163.com
  • 作者简介:杜文,男,1986年生,博士研究生,主要从事隧道支护理论的研究工作
  • 基金资助:
    国家自然科学基金项目(No. 51478037)

Case study on double-deck subway station undercrossing and analysis of filed monitoring about this case

DU Wen1, WANG Yong-hong1, LI Li2, ZHU Lian-chen3, ZHU Hao-tian3, WANG You-qi3   

  1. 1. Key Laboratory of Urban Underground Engineering of the Education Ministry, Beijing Jiaotong University, Beijing 100044, China; 2. China Railway Liuyuan Group Co., Ltd., Tianjin 300308, China; 3. The 5th Engineering Co., Ltd. of China Railway 25th Bureau Group., Qingdao, Shandong 266000, China
  • Received:2018-09-04 Online:2019-07-11 Published:2019-07-28
  • Supported by:
    This work was supported by National Natural Science Foundation (51478037).

摘要: 长春地铁1号线卫星广场站下穿轻轨3号线工程中,下穿段负一层顶板与轻轨隧道底板密贴接触,形成“叠合板结构”。施工中,先注浆加固下穿段土体,然后采用六导洞PBA法配合千斤顶顶升支撑修建下穿段,具体方法为:于1#+4#导洞冠梁上布置液压千斤顶,对上层板形成两端临时支撑;再于3#+5#、2#+4#导洞内各施作一组钢管混凝土立柱及纵梁,对下层板形成永久支撑,纵梁兼做负一层顶板。然后逐步移除千斤顶、拆除导洞初支、浇筑负一层顶板,实现上下层板密贴;最后修建剩余下穿段结构。为评估施工对轻轨隧道的影响,建立数值模型验算轻轨隧道底板弯矩,结果为安全;数值结果表明,底板沉降经历了先下沉、后抬升、再下沉的复杂过程,最终沉降曲线为单凹槽状。实测数据表明:沉降曲线可划分为振荡型、掉落型两种;曲线类型与测点位置有很大关系,震荡型曲线测点位于下穿段两端,掉落型曲线测点位于下穿段中部,分别受千斤顶、5#及6#导洞开挖控制;底板中线最终沉降为单凹槽状,最大沉降量与数值结果相符;变形缝差异沉降在千斤顶作用下一直处于可控状态。

关键词: 隧道, 地铁下穿, 叠合板结构, 液压顶升, 沉降

Abstract: The construction of new subway stations under the existing subway tunnels has high risks and strict requirements for settlement control. The ceiling of Satellite Square station, which belongs to Changchun metro line No.1, contacts tunnel baseplate of light rail line No.3 directly. There is no soil layer between the upper tunnel and lower station, under such circumstances it is described as dual-layer formation. The engineering approach is introduced in this paper. Soil was reinforced firstly by grouting before any excavation, then ten hydraulic jacks were arranged in pilot tunnels No.1 & No.4 right beneath baseplate of upper tunnel to mitigate adverse settlement. Then two groups of concrete-filled tubes, together with longitudinal beams, were forged in pilot tunnels No.3 & No.5 and pilot tunnels No.2 & No.4 as permanent supporting. As soon as these tubes were operative, hydraulic jacks and preliminary supports of pilot tunnels were removed orderly while ceiling of station was cast piece by piece, and the rest of station was cast conventionally at last. In the second part, bearing capacity and settlement of upper tunnel are discussed by numerical simulation. It shows that the maximum bending moment on the baseplate of upper tunnel is allowable, and the settlement on central of baseplate is variable from w-shaped to v-shaped. Analysis of filed monitoring about this case is introduced in the third part, the settlement curves fall into two distinctive categories and highly depend on physical positions of monitoring points. The observed settlements on central of baseplate are consistent to numerical results both in maximum value and overall profile. Due to effective control of hydraulic jacks, the differential settlements on movement joints are also manageable.

Key words: tunneling, subway undercrossing, dual-layer formation, jack uplifting, settlement

中图分类号: 

  • TU 921
[1] 徐日庆, 程康, 应宏伟, 林存刚, 梁荣柱, 冯苏阳, . 考虑埋深与剪切效应的基坑卸荷下卧 隧道的形变响应[J]. 岩土力学, 2020, 41(S1): 195-207.
[2] 郑刚, 栗晴瀚, 程雪松, 哈达, 赵悦镔. 承压层快速减压与回灌应用于隧道抢险的理论与设计[J]. 岩土力学, 2020, 41(S1): 208-216.
[3] 姚宏波, 李冰河, 童磊, 刘兴旺, 陈卫林. 考虑空间效应的软土隧道上方卸荷变形分析[J]. 岩土力学, 2020, 41(7): 2453-2460.
[4] 房昱纬, 吴振君, 盛谦, 汤华, 梁栋才, . 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503.
[5] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[6] 郑立夫, 高永涛, 周喻, 田书广, . 浅埋隧道冻结法施工地表冻胀融沉规律及冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(6): 2110-2121.
[7] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[8] 吴鑫林, 张晓平, 刘泉声, 李伟伟, 黄继敏. TBM岩体可掘性预测及其分级研究[J]. 岩土力学, 2020, 41(5): 1721-1729.
[9] 周恩全, 宗之鑫, 王琼, 陆建飞, 左熹. 橡胶-粉土轻质混合土中管道动力响应特性[J]. 岩土力学, 2020, 41(4): 1388-1395.
[10] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[11] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[12] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[13] 郑立夫, 高永涛, 周喻, 田书广. 基于流固耦合理论水下隧道冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(3): 1029-1038.
[14] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[15] 徐进, 王少伟, 杨伟涛. 水位变化下可压缩土层的黏弹性耦合变形分析[J]. 岩土力学, 2020, 41(3): 1065-1073.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!