›› 2014, Vol. 35 ›› Issue (S2): 593-599.

• 数值分析 • 上一篇    下一篇

夯扩挤密碎石桩加固液化砂土地基的动力数值分析

杨继红1,董金玉1,黄志全1,马述江2,耿运生2   

  1. 1.华北水利水电大学 资源与环境学院,郑州 450011;2.河北省水利水电第二勘测设计研究院,石家庄 050021
  • 收稿日期:2014-06-03 出版日期:2014-10-31 发布日期:2014-11-12
  • 作者简介:杨继红,女,1976生,博士,副教授,主要从事地质工程和岩土工程方面的教学和科研工作。
  • 基金资助:

    国家自然科学基金青年基金资助项目(No. 41102203);水利部公益性行业科研专项经费项目(No. 201301034);郑州市创新型科技人才培育计划领军人才项目(No. 10LJRC185);河南省基础与前沿技术研究项目(No. 122300410146);华北水利水电学院高层次人才引进项目(No. 201105)。

Dynamic numerical analysis of liquefiable sand soil foundation reinforced by compacted gravel pile

YANG Ji-hong1, DONG Jin-yu1, HUANG Zhi-quan1, MA Shu-jiang2, GENG Yun-sheng2   

  1. 1. College of Resources and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; 2. The Second Design and Research Institute of Water Conservancy and Hydropower of Hebei Province, Shijiazhuang 050021, China
  • Received:2014-06-03 Online:2014-10-31 Published:2014-11-12

摘要: 砂土液化问题一直是土动力学与岩土地震工程研究领域的重要课题之一。基于南水北调中线某工程,通过现场和室内试验获取土体的物理力学参数,利用岩土数值分析软件FLAC3D对夯扩挤密碎石桩加固干渠液化砂土地基进行了动力数值分析。结果表明,由于夯扩挤密碎石桩的排水作用,干渠底部饱和砂土地基中的超静孔隙水压力和孔压比与加固前相比明显减小;干渠渠道底部饱和砂土中的监测曲线表明,随着地震荷载持续时间的增加,饱和砂土地基中超静孔隙水压力和孔压比峰值较加固前大幅值降低,且时程曲线达到峰值之后也由加固前的基本保持不变改为迅速消减降低;由于夯扩挤密碎石桩的排水和挤密作用,有效消除了干渠渠道底部以及渠堤坡面外侧平台至坡脚底部砂土层的液化现象,加固后干渠底部饱和砂土地基中没有液化现象产生。

关键词: 夯扩挤密碎石桩, 液化砂土, 动力数值分析, 超静孔隙水压力, 孔压比

Abstract: The sand liquefaction problem has been one of the important topics in soil dynamics and geotechnical earthquake engineering. Based on a project of the Middle Route of South-to-North Water Transfer, physico-mechanical parameters of soil have been obtained through field and laboratory tests. And the dynamic numerical analysis on the liquefied sand foundation of the main canal which has been reinforced by compacted gravel piles is conducted with FLAC3D. The results show that, for the drainage of the compacted gravel piles, the excess pore water pressure and pore pressure ratio in the saturated sand foundation of the main canal bottom have been significantly reduced compared to ones before reinforcement. Monitoring curves of the saturated sand in the bottom of the main canal show that, with the duration of the seismic loading, the peak values of the excess pore water pressure and pore pressure ratio in the saturated sand foundation decrease significantly compared to ones before reinforcement; and the time-history curve declines quickly when to the peak value, which keeps essentially unchanged before reinforcement. For the drainage and compaction effect of the compacted gravel piles, the liquefaction of the sand layers, in the bottom of the main canal, and from the outside platform of the embankment to the bottom of the slope foot, is eliminated effectively. And no liquefaction occurs in the saturated sand foundation of the main canal bottom after reinforcement.

Key words: compacted gravel pile, liquefiable sand soil, dynamic numerical analysis, excess pore water pressure, pore pressure ratio

中图分类号: 

  • TU 452
[1] 张峰, 陈国兴, 吴琪, 周正龙. 波浪荷载下饱和粉土不排水动力特性试验研究[J]. 岩土力学, 2019, 40(7): 2695-2702.
[2] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 液化自由场地震响应大型振动台模型试验分析[J]. 岩土力学, 2019, 40(10): 3767-3777.
[3] 刘家顺,张向东,孙嘉宝,杨建军,方天健. 主应力轴旋转下K0固结饱和粉质黏土孔压及变形特性试验研究[J]. , 2018, 39(8): 2787-2794.
[4] 周恩全, 朱晓冬, 陆建飞, 王炳辉, . 液化后砂土流体特性测试装置的研发及试验研究[J]. 岩土力学, 2018, 39(12): 4698-4706.
[5] 陈育民,王 睿,张艳萍, . 饱和悬浮塑料砂流动特性的试验研究[J]. , 2017, 38(1): 67-74.
[6] 张鑫磊,王志华,许振巍,吕 丛,. 液化砂土流动效应的振动台试验研究[J]. , 2016, 37(8): 2347-2352.
[7] 闫澍旺 ,李 嘉 ,贾沼霖 ,孙立强 , . 海洋石油平台超长桩拒锤分析及工程实例[J]. , 2015, 36(S2): 559-564.
[8] 胡向前 ,焦志斌 ,李运辉. 打设排水板后饱和软黏土中打桩引起的孔隙水压力分布及消散规律[J]. , 2011, 32(12): 3733-3737.
[9] 何剑平 陈卫忠. 地下结构碎石排水层抗液化措施数值试验[J]. , 2011, 32(10): 3177-3184.
[10] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556-3562.
[11] 王淑云,鲁晓兵,赵 京,王爱兰. 粉质黏土周期荷载后的不排水强度衰化特性[J]. , 2009, 30(10): 2991-2995.
[12] 高子坤,施建勇. 饱和黏土中单桩桩周土空间轴对称固结解[J]. , 2008, 29(4): 979-982.
[13] 高子坤. 群桩桩间横观各向同性土体固结问题级数解[J]. , 2008, 29(3): 775-779.
[14] 黄 俊 ,张顶立 ,徐桂珍 . 重叠隧道上覆地层变形规律分析[J]. , 2007, 28(12): 2634-2638.
[15] 周 健,史旦达,贾敏才,崔积弘. 低能量强夯法加固粉质黏土地基试验研究[J]. , 2007, 28(11): 2359-2364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[2] 陈红江,李夕兵,刘爱华. 矿井突水水源判别的多组逐步Bayes判别方法研究[J]. , 2009, 30(12): 3655 -3659 .
[3] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[4] 雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. , 2010, 31(1): 223 -228 .
[5] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[6] 柴 波,殷坤龙,陈丽霞,李远耀. 岩体结构控制下的斜坡变形特征[J]. , 2009, 30(2): 521 -525 .
[7] 赵洪波,茹忠亮,张士科. SVM在地下工程可靠性分析中的应用[J]. , 2009, 30(2): 526 -530 .
[8] 徐 扬,高 谦,李 欣,李俊华,贾云喜. 土石混合体渗透性现场试坑试验研究[J]. , 2009, 30(3): 855 -858 .
[9] 邓华锋,张国栋,王乐华,邓成进,郭 靖,鲁 涛. 导流隧洞开挖施工的爆破振动监测与分析[J]. , 2011, 32(3): 855 -860 .
[10] 谭峰屹,邹志悝,邹荣华,林祖锴,郑德高. 换填黏性土料工程特性试验研究[J]. , 2009, 30(S2): 154 -157 .