›› 2014, Vol. 35 ›› Issue (11): 3207-3213.

• 岩土工程研究 • 上一篇    下一篇

几种缺陷单桩竖向承载性状的现场模型试验研究

王成华,李全辉,张美娜,苏 娟,占 川   

  1. 天津大学 建筑工程学院,天津 300072
  • 收稿日期:2014-06-24 出版日期:2014-11-11 发布日期:2014-12-10
  • 作者简介:王成华,男,1959年生,博士,教授,从事岩土工程领域的教学与科学研究工作
  • 基金资助:
    国家自然科学基金(No. 50978182)。

Field model test study of vertical bearing behavior of some kinds of single defect piles

WANG Cheng-hua, LI Quan-hui, ZHANG Mei-na, SU Juan, ZHAN Chuan   

  1. School of Civil Engineering, Tianjin University, Tianjin 300072, China
  • Received:2014-06-24 Online:2014-11-11 Published:2014-12-10

摘要: 为评价灌注桩在施工过程中因形成缩径、扩径、断桩、泥皮等缺陷导致单桩竖向极限承载力变化的程度,针对缺陷桩单桩开展了现场模型试验研究。进行正常桩和缺陷桩的竖向静载模型试验,测试单桩竖向极限承载力,对比缺陷桩和正常桩的单桩承载特性,分析了缩径、扩径、断桩、泥皮等缺陷对单桩承载性状的影响。对比正常桩和缺陷桩的荷载-沉降关系曲线,得出了基于文中缺陷桩设计方案的结论,缩径缺陷和泥皮缺陷均使单桩竖向极限承载力降低,降幅在正常桩极限承载力的15%范围内;扩径缺陷桩的荷载-沉降关系曲线无明显陡降点,桩顶沉降较正常桩递增缓慢;断桩缺陷影响荷载-沉降关系曲线中反弯点的出现位置,即反弯点出现时的桩顶位移与断桩缺陷距地表的距离有关。

关键词: 灌注桩, 缺陷桩, 现场模型试验, 单桩竖向极限承载力

Abstract: To evaluate the changing degree of single pile vertical bearing behavior resulted by defect piles such as stem shrinkage pile, stem enlargement pile and broken pile which are developed in construction process, field model tests were used to analyze single defect piles. And measurements of its ultimate bearing behavior were carried out by conducting vertical static loaded tests of test piles with and without defects. Compared with normal piles, the influences of defects mentioned above on bearing behavior of piles were studied. Conclusions are drawn based on the designing scheme of test piles in the paper through comparative analyses of the load-settlement curves of normal piles and defect piles. Compared with the vertical ultimate load capacity of single normal pile, it reduces by less than 15 percent due to defects in single pile such as stem shrinkage pile or a pile with mud cake around. The steep drop point is not so clear in the load-settlement curve of single stem shrinkage pile, the top settlement of which increases more gradually than normal pile. The occurrence of inflection point in load-settlement curves of broken piles is determined by the distance of broken defect from ground surface.

Key words: bored piles, defect piles, field model tests, ultimate bearing capacity of single pile

中图分类号: 

  • TU 473
[1] 黄生根, 沈佳虹, 李 萌, . 钻孔灌注桩压浆后承载性能的可靠度分析[J]. 岩土力学, 2019, 40(5): 1977-1982.
[2] 肖勇杰,陈福全,董译之. 基于Gudehus-Bauer模型的砂土中灌注桩护壁套管高频振动贯入速率[J]. , 2018, 39(8): 3011-3019.
[3] 李洪江,童立元,刘松玉,包红燕,杨 涛, . 大直径超长灌注桩水平承载性能的参数敏感性[J]. , 2018, 39(5): 1825-1833.
[4] 雷文凯,肖衡林,张金团,刘永莉,范 萌, . 基于光纤检测技术的夹泥灌注桩模型试验[J]. , 2018, 39(3): 909-916.
[5] 林良庆,陈福全. 大直径贝诺特桩套管上拔机制分析[J]. , 2017, 38(8): 2385-2394.
[6] 肖勇杰,陈福全,林良庆. 灌注桩套管振动贯入引起的地面振动及隔振研究[J]. , 2017, 38(3): 705-713.
[7] 张奇华,李玉婕,余美万,罗 荣,邬爱清. 隧道锚围岩抗拔机制及抗拔力计算模式初步研究[J]. , 2017, 38(3): 810-820.
[8] 李永辉,朱 翔,周同和,. 桩端后注浆对大直径灌注桩影响的现场对比试验研究[J]. , 2016, 37(S2): 388-396.
[9] 李小娟,陈雪奖,戴国亮,龚维明,. 黏性土中钻孔灌注桩自平衡转换系数取值研究[J]. , 2016, 37(S1): 226-232.
[10] 李 林,李镜培,岳著文,唐剑华, . 饱和黏土中钻孔灌注桩孔壁稳定性力学机制研究[J]. , 2016, 37(9): 2496-2504.
[11] 李永辉 ,王卫东 ,吴江斌,. 桩端后注浆超长灌注桩桩侧极限摩阻力计算方法[J]. , 2015, 36(S1): 382-386.
[12] 姚建平 ,蔡德钩 ,朱 健 ,王立伟,. 后压浆钻孔灌注桩承载特性研究[J]. , 2015, 36(S1): 513-517.
[13] 马 蒙 ,刘建磊 ,孙 宁 ,柯在田 ,李林杰,. 桩基动刚度影响因素分析[J]. , 2015, 36(7): 1939-1944.
[14] 李永辉 ,王卫东 ,黄茂松 ,郭院成,. 超长灌注桩桩-土界面剪切试验研究[J]. , 2015, 36(7): 1981-1988.
[15] 肖勇杰,陈福全,林良庆. 灌注桩套管高频振动贯入过程中挤土效应研究[J]. , 2015, 36(11): 3268-3274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[2] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[3] 师旭超,韩 阳. 卸荷作用下软黏土回弹吸水试验研究[J]. , 2010, 31(3): 732 -736 .
[4] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[5] 白 冰,李小春,石 露,唐礼忠. 弹塑性应力-应变曲线的斜率恒等式及其验证和应用[J]. , 2010, 31(12): 3789 -3792 .
[6] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[7] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[8] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .
[9] 宋 玲 ,刘奉银 ,李 宁 . 旋压入土式静力触探机制研究[J]. , 2011, 32(S1): 787 -0792 .
[10] 金解放 ,李夕兵 ,殷志强 ,邹 洋. 循环冲击下波阻抗定义岩石损伤变量的研究[J]. , 2011, 32(5): 1385 -1393 .