›› 2015, Vol. 36 ›› Issue (12): 3439-3446.doi: 10.16285/j.rsm.2015.12.014

• 基础理论与实验研究 • 上一篇    下一篇

气体运移导致煤体结构变形演化特征研究 ——以注入氦气为例

王春光1, 2, 3,王长盛1,陶志刚2,蒋宇静1,谭云亮1,魏明尧3,崔光磊3,吴学震1, 4   

  1. 1.山东科技大学 矿山灾害预防控制国家重点实验室培育基地,山东 青岛 266590; 2.中国矿业大学(北京) 深部岩土力学与地下工程国家重点实验室,北京 100083;3.中国科学院武汉岩土力学研究所,湖北 武汉 430071 4.长崎大学 工学研究科,日本 长崎 852-8521
  • 收稿日期:2015-01-15 出版日期:2015-12-11 发布日期:2018-06-14
  • 作者简介:王春光,男,1982年生,在读博士后,讲师,主要从事煤与瓦斯耦合机理方面的研究工作。
  • 基金资助:

    国家自然科学基金(No. 41202194,No. 51474204,No. 51134005);山东省自然科学基金(No. ZR2012EEQ021);中国博士后科学基金 (No. 2013M542097);深部岩土力学与地下工程国家重点实验室开放基金(No. SKLGDUEK1421);山东省“泰山学者”建设工程专项经费;山东省高等学校青年骨干教师国内访问学者项目;岩土力学与工程国家重点实验室开放基金(No. Z014006)资助。

Structure deformation of coal induced by gas migration ——A case of injecting helium gas into intact coal

WANG Chun-guang1, 2, 3, WANG Chang-sheng1, TAO Zhi-gang2, JIANG Yu-jing1,TAN Yun-liang1, WEI Ming-yao3, CUI Guang-lei3, WU Xue-zhen1, 4   

  1. 1. State Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. State Key Laboratory of Geomechanic and Deep Underground Engineering, China University of Mining and Technology, Beijing, 100083, China; 3. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 4. Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
  • Received:2015-01-15 Online:2015-12-11 Published:2018-06-14
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 41202194, 51474204 and 51134005), Natural Science Foundation of Shandong Province(Grant No. ZR2012EEQ021), the China Postdoctoral Science Foundation (Grant No. 2013M542097), the Open Project of State Key Laboratory in CUMTB(Grant No. SKLGDUEK1421), ‘Taishan Scholar’ at SDUST, “Young Core Instructor and Domestic Visitor” Foundation From college of Shandong Province and Open Project of State Key Laboratory in IRSM (Grant No. Z014006).

摘要: 气体运移引起煤体变形是研究煤层气抽采、预防瓦斯突出与温室气体的地质封存的核心问题。一般认为,有效应力变化是控制岩土类材料骨架变形的关键因素。但大量测试结果表明,煤的渗透率与有效应力(或者孔隙压力)表现出非线性关系。为此,应实时观测在静孔隙压力与三轴应力状态下氦气流动导致原煤变形演化全过程。在静孔隙压力状态下煤体积经历从收缩到回弹过程。注气压力越大,煤的收缩与回弹量越大,且收缩量总是大于回弹量。在三轴应力状态下注气初期煤样迅速膨胀。随着注气达到平衡状态,煤变形过程与约束条件表现出紧密相关性,即在应力约束下煤的膨胀率相比注气初期明显减缓;在位移约束下煤由膨胀转向收缩。上述试验结果表明,仅有孔隙压力作用下,煤基质与裂隙之间孔隙压力差可以压缩煤体,随着气体扩散的进行,可恢复煤的部分压缩变形量。在三轴应力状态下,煤的总体变形是裂隙与基质两者变形共同作用的结果。在应力约束下煤基质与裂隙可以自由膨胀。而煤体在位移约束下,因气体扩散导致煤基质膨胀只能挤压裂隙。根据上述实测结果探讨注气导致煤骨架变形演化机制,为深入理解煤裂隙与基质相互作用对煤渗透率演化提供试验依据。

关键词: 注气, 裂隙与基质, 边界条件

Abstract: Coal deformation induced by gas migration is significant to investigate coal bed methane recovery and geological sequestration of greenhouse gas. Generally, the variations of effective stress result in the shrinkage of geo-materials. However, the relationship between coal permeability and effective stress or pore pressure is nonlinear from extensive experimental results. Therefore, experiments are performed to study coal deformation caused by the flow of injected pure helium gas under hydrostatic pressure and triaxial stress conditions, respectively. Experimental results show that the coal sample undergoes a transition from shrinkage to recovery under hydrostatic pressure. Although both the coal shrinkage and recovery are proportional to the pressure of injected gas, the magnitude of shrinkage is greater than that of recovery. Under triaxial stress conditions, the coal sample rapidly expands at the beginning of helium injection. As the gas injection approaches equilibrium, the coal deformation is significantly controlled by the boundary condition. The coal expansion rate changes slowly under stress controlled condition, while the coal transits from expansion to shrinkage under displacement controlled condition. The above results indicate that the gas pressure difference between coal matrices and cleats is able to compress the matrix volume, and such compressed coal also could recover due to gas diffusion. In addition, the coal deformation is controlled by the interaction between cleats and matrix. It can be explained that coal matrices and cleats expand freely under the stress controlled boundary, while the coal matrix expansion induced by gas diffusion only narrow the aperture of cleats under displacement controlled condition. In conclusion, this study demonstrates the deformation evolution of coal induced by gas injection based on experimental results, which is particularly significant for deeply understanding the coal permeability.

Key words: gas injection, cleat and matrix, boundary condition

中图分类号: 

  • TU 454
[1] 蒋中明, 刘澧源, 赵海斌, 唐 栋, 胡 炜, 梅松华, 李 鹏, . 地下储气库热力耦合数值分析动态边界条件研究[J]. 岩土力学, 2019, 40(3): 1149-1157.
[2] 刘世伟,盛 谦,朱泽奇,龚彦峰,崔 臻,李建贺,张善凯,. 隧道围岩内地下水渗流边界效应影响研究[J]. , 2018, 39(11): 4001-4009.
[3] 邓高阳,肖 明,陈俊涛. 基于变分不等式的地下洞室渗流边界模拟[J]. , 2017, 38(3): 762-768.
[4] 李 赞 ,雷国辉,付崔伟, . 砂墙地基二维固结自由应变解[J]. , 2016, 37(6): 1613-1622.
[5] 李 浪,王明洋,范鹏贤,程怡豪,李治中,蒋海明. 深地下工程模型试验加卸载装置的研制[J]. , 2016, 37(1): 297-304.
[6] 储 亚 ,刘松玉 ,蔡国军 ,  . 原位贯入装置标定罐模型试验研究与发展[J]. , 2015, 36(S1): 452-458.
[7] 张文杰,赵 培,贾文强. 一维对流-扩散试验各种边界条件及其统一形式解析解[J]. , 2015, 36(10): 2759-2764.
[8] 上官士青 ,杨 敏 ,李卫超 , . 被动桩水平位移荷载施加位置的探讨[J]. , 2015, 36(10): 2934-2938.
[9] 屠红珍 ,徐衍徽 ,谢立全,. 软基真空预压加固的注气增效机制与数值分析[J]. , 2014, 35(S2): 600-606.
[10] 赵跃堂,罗中兴,李振慧,储 程. 深埋地下结构静动力耦合响应分析的边界条件设置方法[J]. , 2013, 34(5): 1495-1500.
[11] 张乐文 ,张德永 ,邱道宏. 径向基函数神经网络在地应力场反演中的应用[J]. , 2012, 33(3): 799-804.
[12] 冯大阔,侯文峻,张建民,张 嘎. 不同法向边界条件接触面三维力学特性的试验研究[J]. , 2010, 31(8): 2419-2424.
[13] 陈 锋,杨海军,杨春和. 盐岩储气库注气排卤期剩余可排卤水分析[J]. , 2009, 30(12): 3602-3606.
[14] 胡 琦,凌道盛,陈云敏. 基于Melan解的水平基床系数分析方法及工程运用[J]. , 2009, 30(1): 33-39.
[15] 张传庆 ,周 辉 ,冯夏庭 ,张振华 ,董绍尧 . 局域地应力场获取的插值平衡方法[J]. , 2008, 29(8): 2016-2024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[2] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[3] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[4] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[5] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[6] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[7] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[8] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[9] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[10] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .