›› 2018, Vol. 39 ›› Issue (1): 254-264.doi: 10.16285/j.rsm.2016.2329

• 岩土工程研究 • 上一篇    下一篇

厚煤层快速回采切顶卸压无煤柱自成巷工程试验

何满潮1,高玉兵1, 2,杨 军1, 2,王建文3,王亚军1, 2,朱 珍1, 2   

  1. 1. 中国矿业大学(北京) 深部岩土力学与地下工程国家重点实验室,北京 100083;2. 中国矿业大学(北京) 力学与建筑工程学院,北京 100083; 3. 陕西煤业化工集团 神木柠条塔矿业有限公司,陕西 榆林 719300
  • 收稿日期:2016-10-04 出版日期:2018-01-10 发布日期:2018-06-06
  • 通讯作者: 高玉兵,男,1989 年生,博士,主要从事深部岩石力学理论及工程灾害防治方面的研究工作。E-mail: yubing_gao@163.com E-mail:hemanchao@263.net
  • 作者简介:何满潮,男,1956年生,博士,中国科学院院士,教授,博士生导师,主要从事深部岩石力学理论及工程方面的教学与研究工作。

Engineering experimentation of gob-side entry retaining formed by roof cutting and pressure release in a thick-seam fast-extracted mining face

HE Man-chao1, GAO Yu-bing1, 2, YANG Jun1, 2, WANG Jian-wen3, WANG Ya-jun1, 2, ZHU Zhen1, 2   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; 2. School of Mechanics and Civil Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China; 3. Shenmu Ningtiaota Coal Mining Company Ltd., Shaanxi Coal and Chemical Industry Group Company Ltd., Yulin, Shaanxi 719300, China
  • Received:2016-10-04 Online:2018-01-10 Published:2018-06-06
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51674265, 51574248).

摘要: 基于切顶卸压自动成巷技术原理,分析了沿空切顶巷道顶板结构演化过程,得出厚煤层快速回采切顶成巷围岩应力、位移传递机制,形成了人为主动构建“基本顶上位岩层-采空区碎胀矸石-巷道切顶短臂梁”围岩稳定结构的控制思路。提出厚煤层快速回采沿空切顶巷道围岩协同控制体系,以“恒阻大变形锚索+墩式单元支架”控制顶板,以“滑移式让位护帮结构+自移式动压防冲结构+波浪式多阻护帮锚杆”控制帮部,形成了应对顶板结构位态、碎石运动状态变化的针对性控制技术。以柠条塔煤矿S1201胶运顺槽为工程背景,完成了厚煤层快速回采条件下切顶卸压无煤柱自成巷现场工业性试验。研究表明,采高增大、采速加快后,基本顶上位岩层易引发少量不宜强制控制的回转变形,支护结构可控让位是构建围岩稳定结构的有效途径之一;巷内压力与采空区矸石运动状态密切相关,增强预裂效果有利于减少动压冲击;成巷过程中巷道顶压首先达到恒阻状态,而后位移趋于稳定,最后形成围岩稳定结构。所设计的配套支护结构可有效协同围岩运动,留巷效果良好。

关键词: 厚煤层, 快速回采, 无煤柱开采, 切顶卸压, 巷道围岩控制

Abstract: In the study, evolution laws of the roof structure were first investigated based on the principle of gob-side entry retaining formed by roof cutting and pressure release. Subsequently, stress and displacement transfer mechanisms of the surrounding rocks around a thick-seam fast-extracted mining face were discussed. Correspondingly, an active stability control approach for the entry surroundings was proposed by building a rock-steady structure using the upper strata of the main roof, bulking gangues at the gob and cutting cantilever of the entry roof. According to the deformation characteristics of the entry surroundings, we designed a series of cooperative supports with characteristics of constant resistance and pressure release. Particularly, the roof was supported by the constant resistance and large deformation anchor cable and pier-type unit. The gangue rib was stabilized by the sliding-type side wall prevention structure, self-advancing dynamic pressure bearing device and side wall prevention bolt with multi-resistances. Finally, industrial field tests were conducted in S1201 haulage entry of Ningtiaota coal mine for the first time. The results indicated that with increasing mining height and accelerating mining speed, a small amount of rotational deformation occurred inevitably owing to the movement of the main roof. Moreover, this deformation was not suitable to be supported compulsorily, and should be better coordinated by building a rock-steady structure artificially. The motion state of the gangues was closely related to the roof pressure, and thus an enhanced presplitting helped to reduce impacts of the dynamic mining pressure. Field monitoring results showed that the roof pressure first reached the constant resistance, and then the displacement tended to be stable. Finally, the rock-steady structure of the entry surroundings was formed. It was verified that the designed support structures could effectively coordinate with the movement of the surrounding rocks, and the indexes of the retained entry met requirements of the next mining panel.

Key words: thick coal seam, rapid mining, none-pillar mining, roof cutting and pressure release, entry surroundings control

中图分类号: 

  • null

[1] 杨军, 魏庆龙, 王亚军, 高玉兵, 侯世林, 乔博文, . 切顶卸压无煤柱自成巷顶板变形 机制及控制对策研究[J]. 岩土力学, 2020, 41(3): 989-998.
[2] 陈上元, 赵 菲, 王洪建, 袁广祥, 郭志飚, 杨 军, . 深部切顶沿空成巷关键参数研究及工程应用[J]. 岩土力学, 2019, 40(1): 332-342.
[3] 何 团,毛德兵,黄志增,孙晓冬,张学亮, . 特厚煤层区段防水煤柱稳定性评价及保护技术研究[J]. , 2017, 38(4): 1148-1153.
[4] 王 琦,樊运平,李 刚,郭文孝,闫殿华,张立平,. 厚煤层综放双巷工作面巷间煤柱尺寸研究[J]. , 2017, 38(10): 3009-3016.
[5] 杨登峰,张凌凡,柴 茂,李 博,白翼飞,. 基于断裂力学的特厚煤层综放开采顶板破断规律研究[J]. , 2016, 37(7): 2033-2039.
[6] 常聚才,谢广祥,张学会. 特厚煤层大采高综放工作面煤壁片帮机制分析[J]. , 2015, 36(3): 803-808.
[7] 江 贝 ,李术才 ,王 琦 ,朱维申 ,王德超 , 王富奇 ,王洪涛 ,阮国强 ,邵 行,. 基于非连续变形分析方法的深部沿空掘巷围岩变形破坏及控制机制对比研究[J]. , 2014, 35(8): 2353-2360.
[8] 彭林军 ,张东峰 ,郭志飚 ,段庆伟,. 特厚煤层小煤柱沿空掘巷数值分析及应用[J]. , 2013, 34(12): 3609-3616.
[9] 高明仕1,窦林名1,张 农1,王 恺1,2,郑百生1. 冲击矿压巷道围岩控制的强弱强力学模型及其应用分析[J]. , 2008, 29(2): 359-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!