岩土力学 ›› 2018, Vol. 39 ›› Issue (S2): 315-325.doi: 10.16285/j.rsm.2018.0803

• 岩土工程研究 • 上一篇    下一篇

滤波频带对TSP预报结果影响分析

付代光,周黎明,肖国强,王法刚   

  1. 长江科学院 水利部岩土力学与工程重点实验室,湖北 武汉 430010
  • 收稿日期:2018-05-08 出版日期:2018-12-21 发布日期:2019-01-06
  • 作者简介:付代光,男,1987年生,博士研究生,工程师,主要从事地球物理正反演方面的研究工作。
  • 基金资助:
    国家重点研发计划项目(No.2017YFC1501200,No.2017YFC1502600);国家自然科学基金项目(No.41702321)

Analysis of influence of filter frequency band on tunnel seismic prediction results

FU Dai-guang, ZHOU Li-ming, XIAO Guo-qiang, WANG Fa-gang   

  1. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010, China
  • Received:2018-05-08 Online:2018-12-21 Published:2019-01-06
  • Supported by:
    This work was supported by the National Key R & D Program of China(2017YFC1501200,2017YFC1502600) and the Natural Science Foundation of China(41702321).

摘要: TSP(tunnel seismic prediction)隧道地质超前预报技术因其探测距离长、预报精度较高,成为当前隧道超前地质预报最为常用的方法之一,TSP数据滤波频带范围的选择是决定预报结果可靠性和稳定性的关键环节。为了获得精确的TSP预报结果,通过对高速公路和铁路隧道681次TSP数据的滤波频带范围对预报结果的影响进行统计分析,并以软夹层、突水、破碎带、溶洞等5种典型的地质情况为例开展分析,结果表明,(1)数据信噪比高:应选择宽频带滤波(适当增加低通-高通或高切-低切的差值),以保证对异常体的精确定位和有效识别,一般可用1.5~2.5倍主频宽度作为滤波的低通值或高切值,但在异常体的发育尺寸大且异常强烈,应适当压缩滤波范围(缩小低通-高通的差值),以便突出异常,如果此时选择宽频带滤波则易导致对围岩地质情况及围岩级别的低估,从而引发施工风险,滤波范围可根据主频的有效宽度确定;(2)数据信噪比低:主频不明显或无主频时应选择窄频带滤波,以便剔除假异常,保留真实的地质情况,对滤波后仍存在的异常需结合其他超前预报方法进一步判定。主频明显时应选择宽频带滤波,避免因窄频滤波引起异常位置偏移而造成误判。文中的TSP数据滤波方法,对提高TSP预报结果的准确性和稳定性,指导隧道安全施工具有重要借鉴和实践意义。

关键词: 隧道超前地质预报, TSP, 滤波频带, 信噪比, 地质异常体, 对比分析

Abstract: At present, the tunnel geological prediction(TGP) is one of the most commonly used method in advanced geological prediction of the tunnel; and filtering process of TSP data is a key link to decide reliability and stability of forecast results. To obtain the accurate results of TGP, 681cases of TGP data from highway and railway tunnels are counted and analyzed for the influence of filter frequency band range on prediction results, and soft interlayer, water inrush, broken zone and karst cave etc.5 typical geological conditions as examples are analyzed. The results show that: (1) Signal-to-noise ratio of data is high that should select wide-band filtering(appropriately increasing the difference between low pass and high pass or high cut and low cut) to ensure accurate positioning and effective recognition for abnormal body; generally, the main frequency width of 1.5-2.5 times can be used as low pass or high cut value of filter; however, the size of abnormal body is big and the grade of abnormal body is strong that should appropriately compress the filer range(reduce the difference between low pass and high pass) to highlight abnormal body, if wide-band filtering is selected in this case, it is easy to underestimate the geological condition and surrounding rock grade of surrounding rock; thus causing construction risk, and the filtering range should be determined according to the effective width of main frequency. (2) Signal-to-noise ratio of data is low: the dominant frequency is not obvious and no domain frequency, one should select narrow-band filtering so as to eliminate fake abnormality and save real geological conditions, the abnormal bodies still after filtering should be further judged by combined with other advanced prediction methods; the dominant frequency is apparent, one should choose wide-band filtering to avoid shifting of abnormal position and cause error judgement. The above-mentioned filtering method of TGP data has important practical significance for improving the accuracy and stability of TGP results and guiding the safe construction of tunnel.

Key words: tunnel advanced geological prediction, tunnel geological prediction(TGP), filter frequency band, signal-to-noise ratio, geological anomaly body, comparison and analysis

中图分类号: 

  • U452
[1] 曲宏略,李瑞峰,张建经,胡焕国,. 两种典型桩板墙地震响应特性的对比分析[J]. , 2017, 38(5): 1335-1342.
[2] 陈庆发,杨家彩,高 远,牛文静,陈大鹏,刘俊广,. 大型复杂地质体三维数值模型构建方法比较研究[J]. , 2016, 37(S2): 753-760.
[3] 刘方成 ,陈 璐 ,王海东,. 橡胶砂动剪模量和阻尼比循环单剪试验研究[J]. , 2016, 37(7): 1903-1913.
[4] 陈 昆,闫澍旺,孙立强,王亚雯,. 开挖卸荷状态下深基坑变形特性研究[J]. , 2016, 37(4): 1075-1082.
[5] 邱道宏 ,李术才 ,张乐文 ,崔 伟 ,苏茂鑫 ,谢富东,. 基于隧洞超前地质探测和地应力场反演的岩爆预测研究[J]. , 2015, 36(7): 2034-2040.
[6] 黄锦林 ,张 婷,李嘉琳 , . 库岸滑坡涌浪经验估算方法对比分析[J]. , 2014, 35(S1): 133-140.
[7] 李术才,王 琦,李为腾,李 智,王洪涛,江 贝,张红军. 柔性均布压力加载装置在模型试验中的应用研究[J]. , 2014, 35(1): 61-66.
[8] 李长征、张碧星、师芳芳、. 脉冲压缩方法检测岩石弹性波速度[J]. , 2013, 34(6): 1815-1821.
[9] 李元松 ,余顺新 ,邓 涛 . EN1997-1设计方法与国内规范设计方法对比[J]. , 2012, 33(S2): 105-110.
[10] 肖启航 ,谢朝娟 . TST技术在岩溶地区隧道超前预报中的应用[J]. , 2012, 33(5): 1416-1420.
[11] 石少帅,李术才,李利平,许振浩,武 科,高 阳,原小帅. 岩溶区隧道暗河的综合预报及治理方案研究[J]. , 2012, 33(1): 227-232.
[12] 王吉亮,陈剑平,杨 静,阙金声. 岩爆等级判定的距离判别分析方法及应用[J]. , 2009, 30(7): 2203-2208.
[13] 张尚根. 复合土钉墙支护FLAC3D数值模拟与实测结果对比[J]. , 2008, 29(S1): 129-135.
[14] 卢应发 ,吴延春 ,杨丽平 ,崔玉军 . 非饱和土热力学参数确定的探讨[J]. , 2008, 29(7): 1747-1752.
[15] 薛翊国,李术才,张庆松,李树忱,苏茂鑫,刘 斌,刘 钦. 隧道信息化施工岩溶裂隙水超前地质预报[J]. , 2008, 29(12): 3360-3364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!