›› 2017, Vol. 38 ›› Issue (5): 1335-1342.doi: 10.16285/j.rsm.2017.05.014

• 基础理论与实验研究 • 上一篇    下一篇

两种典型桩板墙地震响应特性的对比分析

曲宏略1,李瑞峰1,张建经2,胡焕国1   

  1. 1. 西南石油大学 地球科学与技术学院,四川 成都 610500;2. 西南交通大学 土木工程学院,四川 成都 610031
  • 收稿日期:2015-07-11 出版日期:2017-05-11 发布日期:2018-06-05
  • 作者简介:曲宏略,男,1984年生,讲师,博士,主要从事岩土工程结构抗震等方面的教学和研究工作。
  • 基金资助:

    国家自然科学基金项目(No. 41602332);安全生产重大事故防治关键技术科技项目(No. 2014_3189);四川省教育厅项目(No. 14ZB0056)。

Comparative analysis of seismic response characteristics of two representative sheet pile walls

QU Hong-lue1, LI Rui-feng1, ZHANG Jian-jing2, HU Huan-guo1   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2015-07-11 Online:2017-05-11 Published:2018-06-05
  • Supported by:

    This work is supported by the National Natural Science Foundation of China (41602332), the Key Technology Research Project of Prevention and Control for Major Work Safety Accident (2014-3189) and the Foundation of Education Office of Sichuan Province of China (14ZB0056).

摘要: 土工结构的震害调查表明,桩板墙具备优良的抗震性能,安装锚索之后效果更佳。尽管如此,目前关于桩板墙的研究大多数集中于静力方面,对于动力响应情况和抗震工作机制的研究较少,关于两类典型桩板墙,即桩板墙和锚索桩板墙的地震响应特性的对比研究未见报道。基于此,将桩板墙和锚索桩板墙进行了同台的大型振动台模型试验,对比分析了两种结构的地震响应特性。试验结果表明:两种结构的土压力、锚索拉力和桩身位移地震时程响应规律均与输入的地震动参数密切相关,如曲线形状和变化趋势,并且它们的峰值出现时刻与地震动加速度峰值出现时刻基本一致。锚索的安装,能更好地保持边坡的稳定性和有效限制桩身变形,尤其是在高地震烈度区,当土体非线性增强时,优势体现愈发明显,即预应力锚索会产生减小桩身位移的效果,特别是当地震系数为0.4时,普通桩板墙的位移达到预应力锚索桩板墙的2.4倍。此外,锚索拉力的施加,能够使桩对土体产生“主动”的反压力,两种结构在静力和地震系数为0.1的工况下桩背所受的滑坡推力基本一致,嵌固段土体抗力的差距也不明显,实测点强度的最大差异不超过20%,说明锚索的作用没有得到充分发挥;但当地震系数大于等于0.2后,锚索作用开始体现,桩土变形的协调性更好,桩背与滑体的相互作用力增大,土体抗力较桩板墙大幅度减小,更有利于边坡的稳定。同时,锚索拉力的作用使结构的悬臂段桩身内力较大,在进行结构设计时,相比于普通桩板墙,锚索桩板墙应加强悬臂段,可以适当弱化嵌固段。分析成果可供高烈度地震区桩板墙的抗震设计、灾后恢复重建及今后相关规范修订参考。

关键词: 桩板墙, 锚索桩板墙, 振动台试验, 响应特性, 对比分析

Abstract: Investigations into damaged geotechnical structures after earthquakes reveal that the sheet pile wall has good seismic performance, especially reinforced by anchor cables. However, the research about sheet pile wall mostly focuses on its behavior under static conditions at present, while scarce achievements on dynamic response and seismic working mechanism yet. The comparative study of seismic response characteristics regarding two types of sheet pile wall, namely sheet pile wall and anchored sheet pile wall, has not been reported in literatures. In this paper, sheet pile wall and anchored sheet pile wall are tested in a large scale shaking table test, and dynamic characteristics of these two types of structures are analyzed. The experiment results show that the dynamic responses of time histories of earth pressures, anchor cable tensions, and displacements of pile from these two types of structures are closely relate to input seismic parameter characteristics, e.g. curve shape and variation trend. The occurrence time between peak value and peak ground acceleration is consistent. The installment of anchor cables can stabilize slope and restrict displacement of pile efficiently, especially in high seismic intensity zones where soil nonlinearity increases. Prestressed anchor cables can constrain displacement of pile. The displacement of sheet pile wall is 2.4 times of displacement of anchored sheet pile wall when the seismic coefficient reaches 0.4. The application of prestress in anchor cables can generate pseudo-active counter pressure from pile to soil, resulting in increased internal force in cantilever segment. Under the conditions of static loading and 0.1 of seismic coefficient, the landslide thrusts and soil resistance of two types are close. The maximum difference of measured intensity is less than 20 percent, indicating minor anchor cable effect. When seismic coefficient is larger than 0.2, anchor cables improves the compatibility of deformation. In this situation, the interactive force between pile and soil increases, and resistance of soil decreases greatly, and the slope is more stable. Meanwhile, the cable tension makes internal force larger in cantilever segment. Thus cantilever segment should be strengthened in structural design, and embedded segment can be weaken appropriately. The achievement of analysis provides reference for seismic design, rebuilding after earthquake, and revision of related specifications in high seismic intensity zones.

Key words: sheet pile wall, anchored sheet pile wall, shaking table test, dynamic characteristics, comparative analysis

中图分类号: 

  • TU 473.1

[1] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[2] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 基于自由场大型振动台试验的饱和砂土 固-液相变特征研究[J]. 岩土力学, 2020, 41(7): 2189-2198.
[3] 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223.
[4] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[5] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[6] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[7] 韩俊艳, 李满君, 钟紫蓝, 许敬叔, 李立云, 兰景岩, 杜修力. 基于埋地管道非一致激励振动台 试验的土层地震响应研究[J]. 岩土力学, 2020, 41(5): 1653-1662.
[8] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[9] 潘旦光, 程业, 陈清军. 地下商场结构对地面运动影响的振动台试验研究[J]. 岩土力学, 2020, 41(4): 1134-1145.
[10] 李平, 张宇东, 薄涛, 辜俊儒, 朱胜. 基于离心机振动台试验的梯形河谷场地 地震动效应研究[J]. 岩土力学, 2020, 41(4): 1270-1278.
[11] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
[12] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
[13] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[14] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[15] 王体强, 王永志, 袁晓铭, 汤兆光, 王海, 段雪锋. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(S1): 565-573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!