岩土力学 ›› 2020, Vol. 41 ›› Issue (2): 571-580.doi: 10.16285/j.rsm.2019.0122

• 基础理论与实验研究 • 上一篇    下一篇

不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究

吴琪1, 2,丁选明1, 2,陈志雄1, 2,陈育民3,彭宇1, 2   

  1. 1. 重庆大学 土木工程学院,重庆 400045;2. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045; 3. 河海大学 土木与交通学院,江苏 南京 210098
  • 收稿日期:2019-01-22 修回日期:2019-05-21 出版日期:2020-02-11 发布日期:2020-02-09
  • 通讯作者: 丁选明,男,1980年生,博士,教授,主要从事土力学与地基基础工程、土动力学与工程振动、环境岩土工程等方面的教学和科研工作。E-mail: dxmhhu@163.com E-mail: wq_cqu@l63.com
  • 作者简介:吴琪,男,1992年生,博士研究生,主要从事地震液化等方面的研究工作
  • 基金资助:
    国家自然科学基金(No.51622803,No.51878103,No.41831282)

Seismic response of pile-soil-structure in coral sand under different earthquake intensities

WU Qi1, 2, DING Xuan-ming1, 2, CHEN Zhi-xiong1, 2, CHEN Yu-min3, PENG Yu1, 2   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 3. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2019-01-22 Revised:2019-05-21 Online:2020-02-11 Published:2020-02-09
  • Contact: DING Xuan-ming, male, born in 1980, PhD, Professor, Research interest: soil mechanics, ground foundation engineering, soil dynamics, engineering vibration and environmental geotechnics. E-mail: dxmhhu@163.com E-mail: wq_cqu@l63.com
  • About author:WU Qi, male, born in 1992, PhD candidate, specializing in the earthquake liquefaction. E-mail: wq_cqu@l63.com.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51622803, 51878103, 41831282).

摘要: 珊瑚礁砂在地震作用下的场地响应受其特殊的工程性质影响。为揭示珊瑚砂场地桩基-地基-上部结构在地震作用下的动力响应特性,开展了不同地震动强度下珊瑚砂地基上3层框架结构群桩基础的振动台模型试验,对地基土和结构物的动力响应进行测试与分析,同时与可液化福建砂场地进行对比研究。结果表明:0.1g正弦波激励下,两种砂模型地基内各处超孔压比均远小于1,模型地基未发生液化;0.2g正弦波激励下,两种砂模型地基发生液化,珊瑚砂场地液化程度小于福建砂场地,液化后的珊瑚砂场地模型地基相比福建砂场地仍具有一定的剪切传递能力和刚度。0.1g和0.2g振动强度下珊瑚砂场地建筑物沉降、水平位移和立柱动弯矩相比福建砂场地较小。不同振动强度下桩基础出现动弯矩峰值的位置不同。

关键词: 珊瑚砂, 振动台试验, 群桩, 动力响应, 超孔隙水压力

Abstract: The dynamic field response to earthquake in the coral sand is affected by its special engineering properties. In order to reveal the seismic response characteristics of the pile-soil-superstructure in the coral sand site, the shaking table tests of pile groups with three-storey frame structure in coral sand under different earthquake intensities are carried out. The dynamic responses to soil and structure are analyzed and compared with those in the liquefied quartz sand of Fujian. The results show that the excess pore water pressure ratios in both coral and quartz sands are far less than 1 under 0.1g seismic intensity, demonstrating that no liquefaction occurs in both sites. However, both coral and quartz sands are liquefied under 0.2g seismic intensity, and the liquefaction degree of coral sand is less than that of quartz sand. Compared with the quartz sand site, the coral sand site still has some shear strength and stiffness after the liquefaction. The settlement, horizontal displacement and column bending moment of coral sand site under 0.1g and 0.2g seismic intensities are smaller than those of quartz sand site. The position of peak bending moment of pile foundation under different seismic intensities is not the same.

Key words: coral sand, shaking table test, pile group, dynamic response, excess pore water pressure

中图分类号: 

  • TU 47
[1] 吕亚茹, 王冲, 黄厚旭, 左殿军, . 珊瑚砂细观颗粒结构及破碎特性研究[J]. 岩土力学, 2021, 42(2): 352-360.
[2] 赖天文, 雷浩, 武志信, 吴红刚, . 玄武岩纤维增强复合材料在高边坡防护中的 振动台试验研究[J]. 岩土力学, 2021, 42(2): 390-400.
[3] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[4] 李福秀, 吴志坚, 严武建, 赵多银, . 基于振动台试验的黄土塬边斜坡 动力响应特性研究[J]. 岩土力学, 2020, 41(9): 2880-2890.
[5] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[6] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
[7] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 基于自由场大型振动台试验的饱和砂土 固-液相变特征研究[J]. 岩土力学, 2020, 41(7): 2189-2198.
[8] 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223.
[9] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[10] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[11] 范怡飞, 王建华, . 考虑桩靴贯入对邻近群桩效应影响的分析方法[J]. 岩土力学, 2020, 41(7): 2360-2368.
[12] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[13] 梁珂, 陈国兴, 杭天柱, 刘抗, 何杨, . 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970.
[14] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[15] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[2] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[3] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[4] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[5] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[6] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .
[7] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[8] 李 敏,柴寿喜,王晓燕,魏 丽. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果[J]. , 2011, 32(4): 1051 -1056 .
[9] 徐 冲,刘保国,刘开云,郭佳奇. 基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型[J]. , 2011, 32(6): 1669 -1675 .
[10] 杨 骁,蔡雪琼. 考虑横向效应饱和黏弹性土层中桩的纵向振动[J]. , 2011, 32(6): 1857 -1863 .