岩土力学 ›› 2020, Vol. 41 ›› Issue (9): 3119-3130.doi: 10.16285/j.rsm.2019.2030
庄妍1, 2,李劭邦3,崔晓艳1, 2,董晓强4,王康宇5
ZHUANG Yan1, 2, LI Shao-bang3, CUI Xiao-yan1, 2, DONG Xiao-qiang4, WANG Kang-yu5
摘要: 土拱效应的作用机制是桩承式路堤荷载传递的关键性技术问题,然而高铁荷载作用下桩承式路堤中土拱效应的研究尚不充分。基于高铁设计规范的相关内容,建立了高铁荷载作用下桩承式路堤三维有限元分析模型,并采用已有研究结论验证了数值模型的正确性。根据该数值分析模型,首先分析了高铁荷载作用下路基的动力响应,研究了高铁荷载作用下道床和路堤不同位置处的竖向位移随时间的变化规律,以及路基中速度与加速度沿深度的分布规律。研究发现:道床和路堤表面处的竖向位移随时间变化呈倒“M”型周期变化,而路堤底部处呈“V”型周期变化;速度与加速度在路基深度范围内衰减了80%。通过变化桩间距、路堤高度以及路堤材料参数,分析其对高铁荷载作用下路堤应力和沉降发展规律的影响,进而分析其对土拱效应的影响。研究结果表明:动载作用下土拱效应依然存在,但有所减弱,动载峰值作用下减弱程度最大,谷值情况下有所恢复;桩间距和路堤高度对高铁荷载作用下桩承式路堤中土拱效应的影响较为明显,而路堤填料内摩擦角和剪胀角的影响则相对较小。
中图分类号:
[1] | 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194. |
[2] | 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354. |
[3] | 李福秀, 吴志坚, 严武建, 赵多银, . 基于振动台试验的黄土塬边斜坡 动力响应特性研究[J]. 岩土力学, 2020, 41(9): 2880-2890. |
[4] | 薛彦瑾, 王起才, 马丽娜, 张戎令, 代金鹏, 王强, . 高速铁路无砟轨道地基泥岩膨胀性分类分级研究[J]. 岩土力学, 2020, 41(9): 3109-3118. |
[5] | 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223. |
[6] | 刘克奇, 丁万涛, 陈瑞, 侯铭垒, . 盾构掌子面三维破坏模型构建与极限支护力计算[J]. 岩土力学, 2020, 41(7): 2293-2303. |
[7] | 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348. |
[8] | 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400. |
[9] | 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612. |
[10] | 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749. |
[11] | 王立安, 赵建昌, 侯小强, 刘生纬, 王作伟. 非均匀饱和半空间的Lamb问题[J]. 岩土力学, 2020, 41(5): 1790-1798. |
[12] | 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304. |
[13] | 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387. |
[14] | 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914. |
[15] | 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055. |
|