岩土力学 ›› 2020, Vol. 41 ›› Issue (9): 3119-3130.doi: 10.16285/j.rsm.2019.2030

• 数值分析 • 上一篇    下一篇

高铁荷载下桩承式路基动力响应及土拱效应研究

庄妍1, 2,李劭邦3,崔晓艳1, 2,董晓强4,王康宇5   

  1. 1. 东南大学 混凝土及预应力混凝土结构教育部重点实验室,江苏 南京 211189;2. 东南大学 土木工程学院,江苏 南京 211189;3. 河海大学 土木与交通学院,江苏 南京 210098;4. 太原理工大学 土木工程学院,山西 太原 030024;5. 浙江工业大学 建筑工程学院,浙江 杭州 310023
  • 收稿日期:2019-12-01 修回日期:2020-06-23 出版日期:2020-09-11 发布日期:2020-10-22
  • 通讯作者: 崔晓艳,女,1989年生,博士,助理研究员,主要进行桩承式加筋路堤中土拱效应的研究。E-mail:cui19890213@126.com E-mail:Joanna_zhuang@163.com
  • 作者简介:庄妍,女,1982年生,博士,教授,博士生导师,主要从事土拱效应、交通岩土、软基处理、边坡工程和海洋岩土等方面的研究。
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目(No.51922029);江苏高校优势学科建设工程资助项目(No.1105007138);中央高校基本科研业务费专项资金资助(No.2242020K40102)。

Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading

ZHUANG Yan1, 2, LI Shao-bang3, CUI Xiao-yan1, 2, DONG Xiao-qiang4, WANG Kang-yu5   

  1. 1. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China; 2. School of Civil Engineering, Southeast University, Nanjing 211189, China; 3. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 4. College of Civil Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; 5. School of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • Received:2019-12-01 Revised:2020-06-23 Online:2020-09-11 Published:2020-10-22
  • Supported by:
    This work was supported by the National Science Fund for Excellent Young Scholars of China (51922029), the Priority Academic Program Development of Jiangsu Higher Education Institutions (1105007138) and the Fundamental Research Funds for the Central Universities (2242020K40102).

摘要: 土拱效应的作用机制是桩承式路堤荷载传递的关键性技术问题,然而高铁荷载作用下桩承式路堤中土拱效应的研究尚不充分。基于高铁设计规范的相关内容,建立了高铁荷载作用下桩承式路堤三维有限元分析模型,并采用已有研究结论验证了数值模型的正确性。根据该数值分析模型,首先分析了高铁荷载作用下路基的动力响应,研究了高铁荷载作用下道床和路堤不同位置处的竖向位移随时间的变化规律,以及路基中速度与加速度沿深度的分布规律。研究发现:道床和路堤表面处的竖向位移随时间变化呈倒“M”型周期变化,而路堤底部处呈“V”型周期变化;速度与加速度在路基深度范围内衰减了80%。通过变化桩间距、路堤高度以及路堤材料参数,分析其对高铁荷载作用下路堤应力和沉降发展规律的影响,进而分析其对土拱效应的影响。研究结果表明:动载作用下土拱效应依然存在,但有所减弱,动载峰值作用下减弱程度最大,谷值情况下有所恢复;桩间距和路堤高度对高铁荷载作用下桩承式路堤中土拱效应的影响较为明显,而路堤填料内摩擦角和剪胀角的影响则相对较小。

关键词: 桩承式路堤, 高速铁路, 土拱效应, 动力响应, 数值分析

Abstract: The mechanism of soil arching effect is the key technical problem for load transfer of pile supported embankment. However, the soil arching in pile supported embankment under high-speed railway load is not well investigated. Based on the code for design of high-speed railway, a three-dimensional finite element analysis model of pile supported reinforced embankment under high-speed railway load is established, and its correctness is verified by the existing research results. According to the numerical model, the dynamic response of subgrade under the high-speed railway load is analyzed, including the variation of vertical displacement with time at different depths of roadbed and embankment load, as well as the distribution of velocity and acceleration along the depth. The results show that the vertical displacement of the roadbed and the embankment surface changes with time in an inverted M shape periodically, while the embankment bottom changes in a V shape periodically. It is also found that the velocity and acceleration decrease by 80% along the depth of subgrade. Then, the influence of different factors including pile spacing, embankment height and the properties of the embankment fill on the stresses and settlements are comprehensively analyzed. Hence, the soil arching effect in piled embankment under high-speed railway loading can be investigated. It shows that the soil arching effect remains valid but weakened under the dynamic loading, which weakens the maximum under the peak load, while restores under the valley load. Also it is found that the influences of pile spacing and embankment height are obvious on soil arching effect under dynamic loading, while the effects of friction angle and dilatancy angle of embankment fill are relatively small.

Key words: piled embankment, high speed railway, soil arching effect, dynamic response, numerical simulation

中图分类号: 

  • TU 473
[1] 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194.
[2] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[3] 李福秀, 吴志坚, 严武建, 赵多银, . 基于振动台试验的黄土塬边斜坡 动力响应特性研究[J]. 岩土力学, 2020, 41(9): 2880-2890.
[4] 薛彦瑾, 王起才, 马丽娜, 张戎令, 代金鹏, 王强, . 高速铁路无砟轨道地基泥岩膨胀性分类分级研究[J]. 岩土力学, 2020, 41(9): 3109-3118.
[5] 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223.
[6] 刘克奇, 丁万涛, 陈瑞, 侯铭垒, . 盾构掌子面三维破坏模型构建与极限支护力计算[J]. 岩土力学, 2020, 41(7): 2293-2303.
[7] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[8] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[9] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[10] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[11] 王立安, 赵建昌, 侯小强, 刘生纬, 王作伟. 非均匀饱和半空间的Lamb问题[J]. 岩土力学, 2020, 41(5): 1790-1798.
[12] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
[13] 芦苇, 赵冬, 李东波, 毛筱霏. 土遗址全长黏结式锚固系统动力响应解析方法[J]. 岩土力学, 2020, 41(4): 1377-1387.
[14] 张恒源, 钱德玲, 沈超, 戴启权. 水平和竖向地震作用下液化场地群桩基础 动力响应试验研究[J]. 岩土力学, 2020, 41(3): 905-914.
[15] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[4] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[5] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[6] 王淑云,鲁晓兵,赵 京,王爱兰. 粉质黏土周期荷载后的不排水强度衰化特性[J]. , 2009, 30(10): 2991 -2995 .
[7] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[8] 陈 松,徐光黎,陈国金,吴雪婷. 三峡库区黄土坡滑坡滑带工程地质特征研究[J]. , 2009, 30(10): 3048 -3052 .
[9] 陈中学,汪 稔,胡明鉴,魏厚振,王新志. 云南东川蒋家沟泥石流形成内因初探[J]. , 2009, 30(10): 3053 -3056 .
[10] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .