岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 341-349.doi: 10.16285/j.rsm.2019.0357

• 岩土工程研究 • 上一篇    下一篇

基于数值模拟的湿润锋前进法测量精度分析

刘丽1,吴羊2,陈立宏1,刘建坤1   

  1. 1. 北京交通大学 城市地下工程教育部重点实验室,北京 100044;2. 中建美国公司,北京 100000
  • 收稿日期:2019-02-12 出版日期:2019-08-01 发布日期:2019-08-16
  • 通讯作者: 陈立宏,博士,副教授,北京交通大学建筑勘察设计院院长,主要从事岩土工程可靠度,桩基础等方面的研究工作。E-mail: lhchen@bjtu.edu.cn E-mail:liulicomcom@126.com
  • 作者简介:刘丽,女,1984年生,博士后,主要从事非饱和土力学、冻土力学和岩土数值模拟方面的研究工作
  • 基金资助:
    国家重点研发计划项目课题(No.2017YFC0404803);北京市自然科学基金项目(No.8192034);冻土工程国家重点实验室开放基金课题(No.SKLFSE201706);中国铁路总公司科技研究开发计划课题(No.2017G002-S)。

Accuracy analysis of wetting front advancing method based on numerical simulation

LIU Li1, WU Yang2, CHEN Li-hong1, LIU Jian-kun1   

  1. 1. Key Laboratory of the Ministry of Education of Urban Underground Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. China Construction America, Beijing 100000, China
  • Received:2019-02-12 Online:2019-08-01 Published:2019-08-16
  • Supported by:
    This work was suppted by the Project Topics of National Key R & D Plans(2017YFC0404803), Beijing National Science Foundation Project(8192034), Open Fund of state key Laboratory of Permafrost Engineering(SKLFSE201706), and China Railway Corporation Science and Technology Research and Development Program(2017G002-S).

摘要: 非饱和土的渗透系数函数测量难度大、耗时长,湿润锋前法(WFM)可在短时间内测得渗透系数函数(HF),但依赖肉眼识别的湿润锋,存在一定的局限性,且该方法的测量精度尚不明确,有待验证。文中针对湿润锋前进法进行研究,探讨初始含水率、湿润锋阀值、降雨入渗速率、传感器位置等因素对湿润锋前进法的测量精度的影响。采用Seep/W软件模拟均质土柱的入渗过程,分析湿润锋前进法数据,计算土体的渗透系数,将其和输入的渗透系数(可认为是真实解)进行比较,对湿润锋前进法的计算精度进行评估,并讨论误差的来源。分析结果表明,湿润锋前进法能够获得比较精确的计算结果;使用湿润锋特征含水率计算湿润锋前进速率,突破了原始湿润锋前进法存在“肉眼观察”的局限性,大大拓展了该方法的适用性;传感器间距对湿润锋前进法渗透系数函数计算精度没有直接影响;初始含水率越低,降雨入渗速率越大,渗透系数函数范围跨度越大。基于文中的分析结果,对湿润锋前进法的试验设计时,建议采用30~50 cm的土柱进行试验,传感器的数量建议为3~4,可以采用任意初始含水率进行试验接近干燥更好,为避免表面积水,建议降雨强度小于饱和渗透系数。

关键词: 非饱和土渗透系数, 降雨入渗, 湿润锋, 湿润锋前法, 土柱试验

Abstract: The permeability coefficient function of unsaturated soil is difficult to be measured and a long time is required. Wetting front advancing method(WFM) can be applied to measure the hydraulic conductivity function(HF) of unsaturated soil in a short time. However, this method relies on an artifical recognition of wet front, which has certain limitations. In addition, the measurement accuracy of WFM is not clear and needs to be verified. In this paper, impacts of parameters include of initial water content, critical water content of wetting front, rainfall intensity, location of sensor etc on the accuracy of WFM is analyzed. The Seep/W software is used to simulate the infiltration process occurs in the homogeneous soil column. The data is analyzed by WFM to calculate the permeability coefficient of the soil. Simulation results are compared with the input permeability coefficient(i.e. the real solution). The calculation accuracy of the wetting front method is evaluated and the source of error is discussed. The results show that WFM can obtain relative high accurate calculation results. Using the characteristic moisture content at the wetting front to calculate wetting front advancing rate, it overcomes the limitations of original wetting front advancing method with artificial observation and greatly expands the applicability of WFM. The sensor spacing has no direct effect on the calculation accuracy of the permeability coefficient function of wetting frontal advance method. The lower the initial water content, the greater the rainfall infiltration rate, and the greater the span of the permeability coefficient function. Based on the analysis in this paper, the following suggestions are proposed for test design of WFM. The soil column with a length of 30-40 cm and 3-4 sensors are suggested. Any initial water content is acceptable and the dry sample is the best choice. To avoid the surface ponding problem, the rainfall intensity should be smaller than the saturated permeability coefficient of soil.

Key words: unsaturated permeability coefficient, rainfall infiltration, wetting front, wetting front advancing method, soil pile test

中图分类号: 

  • TU443
[1] 简文彬, 黄聪惠, 罗阳华, 聂闻. 降雨入渗下非饱和坡残积土湿润锋运移试验研究[J]. 岩土力学, 2020, 41(4): 1123-1133.
[2] 史振宁, 戚双星, 付宏渊, 曾铃, 何忠明, 方睿敏, . 降雨入渗条件下土质边坡含水率分 布与浅层稳定性研究[J]. 岩土力学, 2020, 41(3): 980-988.
[3] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[4] 詹良通, 胡英涛, 刘小川, 陈捷, 王瀚霖, 朱斌, 陈云敏. 非饱和黄土地基降雨入渗离心模型试验 及多物理量联合监测[J]. 岩土力学, 2019, 40(7): 2478-2486.
[5] 汪华斌, 李建梅, 金怡轩, 周 博, 周 宇, . 降雨诱发边坡破坏数值模拟两个关键问题 的解决方法[J]. 岩土力学, 2019, 40(2): 777-784.
[6] 张晨阳,张 明,张泰丽,孙 强,杨 龙,. 侵入岩脉风化壳对中林村残积土滑坡渗流场和稳定性的影响[J]. , 2018, 39(7): 2617-2625.
[7] 朱才辉,郭炳煊. 古建筑基座渗漏监测及诱因分析[J]. , 2018, 39(11): 4210-4217.
[8] 郑俊杰,郭震山,崔 岚,张 军,. 考虑非饱和渗流与增湿膨胀下的膨胀土隧道稳定性分析[J]. , 2017, 38(11): 3271-3277.
[9] 熊勇林,朱合华,叶冠林,叶 斌,. 降雨入渗引起非饱和土边坡破坏的水-土-气三相渗流-变形耦合有限元分析[J]. , 2017, 38(1): 284-290.
[10] 张 洁,吕 特,薛建锋,郑文棠,. 适用于斜坡降雨入渗分析的修正Green-Ampt模型[J]. , 2016, 37(9): 2451-2457.
[11] 张鹏远,白 冰,蒋思晨. 孔隙结构和水动力对饱和多孔介质中颗粒迁移和沉积特性的耦合影响[J]. , 2016, 37(5): 1307-1316.
[12] 豆红强,韩同春,龚晓南,李智宁,邱子义,. 降雨条件下考虑饱和渗透系数变异性的边坡可靠度分析[J]. , 2016, 37(4): 1144-1152.
[13] 田东方,郑 宏 ,刘德富,. 考虑径流影响的滑坡降雨入渗二维有限元模拟及应用[J]. , 2016, 37(4): 1179-1186.
[14] 汪丁建,唐辉明,李长冬,葛云峰,易贤龙. 强降雨作用下堆积层滑坡稳定性分析[J]. , 2016, 37(2): 439-445.
[15] 覃小华,刘东升,宋强辉,王 旭,吴润泽,辛建平, . 强降雨条件下基岩型层状边坡入渗模型及稳定性研究[J]. , 2016, 37(11): 3156-3164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!