岩土力学 ›› 2019, Vol. 40 ›› Issue (11): 4352-4360.doi: 10.16285/j.rsm.2018.1271

• 基础理论与实验研究 • 上一篇    下一篇

减饱和砂土缓倾场地的液化性状分析

李晶1, 2,陈育民1, 2,方志3,高晗1, 2,飞田哲男4,周葛1, 2   

  1. 1. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098;2. 河海大学 土木与交通学院,江苏 南京 210098; 3. 中设设计集团股份有限公司,江苏 南京 210014;4. 日本关西大学 环境都市工学部,日本 大阪 564-8680
  • 收稿日期:2018-07-16 出版日期:2019-11-11 发布日期:2019-11-29
  • 通讯作者: 陈育民,男,1981年生,博士,教授,博士生导师,主要从事土动力学与土工抗震方面的研究工作。E-mail:ymch@vip.163.com E-mail:292577488@qq.com
  • 作者简介:李晶,女,1993年生,硕士研究生,主要从事土动力学与土工抗震方面的研究工作。
  • 基金资助:
    国家自然科学基金面上项目(No. 51379067, No. 51679072);江苏省研究生科研与实践创新计划项目(No. SJCX18_0189);中央高校基本科研业务费项目(No. 2018B763X14, No. 2015B17314)。

Liquefaction characteristics analysis on gently tilting desaturated sandy ground

LI Jing1, 2, CHEN Yu-min1, 2, FANG Zhi3, GAO Han1, 2, TOBITA Tetsuo4, ZHOU Ge1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 3. China Design Group Co., Ltd., Nanjing, Jiangsu 210014, China; 4. Environmental and Applied System Engineering, Kansai University, Osaka 564-8680, Japan
  • Received:2018-07-16 Online:2019-11-11 Published:2019-11-29
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51379067, 51679072), the Funds for Postgraduate Research & Practice Innovation Program of Jiangsu Province(SJCX18_0189) and the Fundamental Research Funds for the Central Universities(2018B763X14, 2015B17314).

摘要: 减饱和法是一种通过减小砂土地基的饱和度,从而提高地基抗液化强度的新方法。基于减饱和砂土中流体模量同步更新的改进算法对减饱和砂土离心机振动台试验进行了数值分析,并与单一流体模量的简化算法进行了对比分析。结果表明:由于改进算法中考虑了因孔压变化引起的等效流体模量的变化,其计算结果更接近试验结果,而简化算法低估了减饱和砂土的孔压积累。基于改进算法开展了不同饱和度、倾斜角度的缓倾场地上液化变形的数值模拟研究,分析发现超孔隙水压力增长的速度及其峰值随着饱和度的增加而增大,饱和度从100%降低至96.4%,同一深度处的超孔压峰值降低约20%~65%,加速度响应的峰值也有明显的降低;沿地基深度0.75 m到9.00 m,侧向位移减少约20%~50%,表明饱和度的降低对抑制倾斜场地上可液化砂土层的侧向变形有显著效果,随着地基深度的减小,饱和度对于侧向位移的影响越来越明显。

关键词: 缓倾场地, 减饱和改进算法, 饱和度, 液化侧向变形, 流体模量

Abstract: Desaturation is a mitigation method for sand liquefaction. Reducing saturation has been proposed to improve liquefaction resistance of saturated sandy foundation. Comparison of the centrifuge test numerical simulation was carried out, based on the modified single-phase fluid numerical method with simultaneous updating fluid modulus and the simplified method with fixed fluid modulus. The results show that the modified method is more reasonable because it considers the change of fluid modulus due to pore pressure change. The simplified method will underestimate the accumulation of pore pressure in the desaturated sand. Numerical simulation of liquefaction deformation on gently tilting desaturated sandy ground with different saturations and angles is carried out based on the modified single-phase fluid numerical method. The results show that the increasing velocity and peak value of excess pore pressure increase with the increase of saturation. The peak value of the excess pore pressure decreases by 20%-65%, and the peak value of acceleration response decreases significantly at the same depth with the saturation decreased from 100% to 96.4%. Along the foundation depth from 0.75 m to 9.00 m, lateral deformation decreases by about 20%-50%. It can conclude that the saturation reduction plays a positive role in reducing lateral deformation of liquefiable sandy foundation. The influence of saturation on lateral deformation is increasing evident with decrease of foundation depth.

Key words: gently tilting ground, desaturation modified numerical method, saturation, liquefaction lateral deformation, fluid modulus

中图分类号: 

  • TU 411
[1] 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142.
[2] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[3] 邹远晶, 韦昌富, 陈合龙, 周家作, 万义钊, . 基于扰动状态概念的含水合物土弹塑性模型[J]. 岩土力学, 2019, 40(7): 2653-2662.
[4] 谌文武, 刘 伟, 王 娟, 孙冠平, 吴玮江, . 黄土饱和度与B值关系试验研究[J]. 岩土力学, 2019, 40(3): 834-842.
[5] 张志红, 陈 杨, 张志亮, 田改垒. 高饱和条件下水-力-化耦合模型及数值模拟[J]. 岩土力学, 2018, 39(S2): 100-106.
[6] 陈合龙,韦昌富,田慧会,魏厚振,. 气饱和含CO2水合物砂的三轴压缩试验[J]. , 2018, 39(7): 2395-2402.
[7] 伍海清,白 冰,李小春,刘明泽,何媛媛, . CO2地质封存中储层流体压力演化规律的解析模型[J]. , 2018, 39(6): 2099-2105.
[8] 蒋明镜,刘 俊,周 卫,奚邦禄, . 一个深海能源土弹塑性本构模型[J]. , 2018, 39(4): 1153-1158.
[9] 巢志明,王环玲,徐卫亚,贾朝军,赵 恺,. 一种快速制备不同含水饱和度岩石试样的方法[J]. , 2018, 39(3): 1109-1114.
[10] 仇浩淼,夏唐代,郑晴晴,周 飞, . 饱和冻土中弹性体波传播特性影响参数研究[J]. , 2018, 39(11): 4053-4062.
[11] 钱劲松,李嘉洋,周 定,凌建明. 考虑吸力效应的非饱和黏土回弹模量预估模型[J]. , 2018, 39(1): 123-128.
[12] 洪成雨,刘子雄,张孟喜,周 奇,. 灌浆压力与上覆土压力对土钉摩阻力的影响研究[J]. , 2017, 38(S2): 317-322.
[13] 李 凯,王志兵,韦昌富,颜荣涛,卢有谦,. 饱和度对风化花岗岩边坡土体抗剪特性的影响[J]. , 2016, 37(S1): 267-273.
[14] 彭尔兴,孙文博,章定文,刘松玉,朱小丹,. 非饱和含砂细粒土的气体渗透特性研究[J]. , 2016, 37(5): 1301-1306.
[15] 徐 洁 ,周 超,. 干湿路径影响粉土小应变剪切模量的试验研究[J]. , 2015, 36(S1): 377-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!