岩土力学 ›› 2020, Vol. 41 ›› Issue (9): 2891-2900.doi: 10.16285/j.rsm.2019.1992

• 基础理论与实验研究 • 上一篇    下一篇

基于不同卸荷速率与路径影响下 吹填土力学特性研究

杨爱武1, 2,杨少坤1, 2,张振东2   

  1. 1. 东华大学 环境科学与工程学院,上海 201620;2. 天津城建大学 天津市软土特性与工程环境重点实验室,天津 300384
  • 收稿日期:2019-11-25 修回日期:2020-04-20 出版日期:2020-09-11 发布日期:2020-10-20
  • 作者简介:杨爱武,男,1971年生,博士,教授,博士生导师,从事软黏土力学特性及土体微观结构研究
  • 基金资助:
    国家自然科学基金项目(No.51978440);天津市科技计划项目(No.19JCZDJC39700,No.2016CJ01)。

Experimental study of mechanical properties of dredger fill under different unloading rates and stress paths

YANG Ai-wu1, 2, YANG Shao-kun1, 2, ZHANG Zhen-dong2   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; 2. Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin Chengjian University, Tianjin 300384, China
  • Received:2019-11-25 Revised:2020-04-20 Online:2020-09-11 Published:2020-10-20
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (51978440) and Tianjin Science and Technology Project (19JCZDJC39700, 2016CJ01).

摘要: 运用应力路径三轴试验仪,对天津滨海吹填土开展等向固结条件下的不排水卸荷试验,探讨不同卸荷路径及卸荷速率对应力?应变关系、孔压变化规律及破坏强度特性的影响。试验结果表明:各卸荷路径下应力?应变曲都近似呈双曲线型。UU0.0(径向卸荷、轴向不卸荷)卸荷路径下试样变形表现为轴向压缩,且孔压变化曲线存在明显的屈服点;UU2.0(轴向和径向均卸荷),UU∞(轴向卸荷、径向不卸荷)及UL1.0(轴向卸荷、径向加荷)路径下试样变形表现为轴向伸长,孔压随着应变的增加而增大,最终速度减缓并趋于稳定增长状态。同种路径下,卸荷速率越大,卸荷初期孔压发展越缓慢,峰值孔压越大。对0.1、0.2、0.3 kPa/min卸荷速率下的应力?应变曲线研究发现,卸荷压缩路径下初始切线模量受卸荷速率影响较大,拉伸路径下则不明显。UL1.0路径下卸荷破坏强度最大,UU2.0路径下该值最小,UU∞路径下则居中。同一卸荷路径下,土体破坏强度随卸荷速率的增大而增大。对各应力?应变曲线进行归一化处理,构建了考虑卸荷速率及卸荷路径影响的初始切线卸荷模量和卸荷破坏强度预测公式。

关键词: 吹填土, 卸荷路径, 卸荷速率, 应力?应变, 初始卸荷模量, 卸荷破坏强度

Abstract: The undrained unloading tests of isotropic consolidation on soft dredger fill of Tianjin Binhai are performed using the stress-path triaxial apparatus to determine the effects of different unloading stress paths and unloading rates on stress-strain relationship, pore pressure variation and failure strength characteristics. Some findings are as follows. The stress-strain curves under each unloading path are approximately hyperbolic curves. Under the unloading stress path of UU0.0(radial unloading, axial not unloading), the deformation of samples exhibits axial compression, and the curves of pore pressure have sharp yield points. On the contrary, the deformation of samples under the path of UU2.0(both axial and radial unloading), UU∞(axial unloading, radial not unloading) and UL1.0(axial unloading, radial loading) show axial tension. In this way, the pore pressure increases with the increase of strain, and finally the growth rate of the pore pressure slows down and tends to increase steadily. Under the same stress paths, the larger the unloading rate, the slower the development of the pore pressure in the initial stage of unloading and the greater the peak pore pressure. The stress-strain curves at unloading rate of 0.1, 0.2 and 0.3 kPa/min are found that the initial tangent modulus is greatly affected by unloading rate under unloading compression paths, while it is not influenced under the tensile paths. The value of unloading failure strength is the maximum under the UL1.0 path, the minimum in the UU2.0 path, and centered in the UU∞ path. Under the same unloading path, the failure strength increases with the increase of the unloading rate. According to the normalization of stress-strain curves, the formulas, which considers the influence of unloading rates and unloading stress paths, are developed to estimate the initial tangent modulus and the unloading failure intensity.

Key words: soft dredger fill, unloading stress path, unloading rate, stress-strain, initial unloading modulus, unloading failure strength

中图分类号: 

  • TU 411
[1] 刘海峰, 郑坤, 朱长歧, 孟庆山, 吴文娟. 基于应力−应变曲线的礁灰岩脆性特征评价[J]. 岩土力学, 2021, 42(3): 673-680.
[2] 李丽华, 余肖婷, 肖衡林, 马强, 刘一鸣, 杨 星, . 稻壳灰加筋土力学性能研究[J]. 岩土力学, 2020, 41(7): 2168-2178.
[3] 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910.
[4] 李敏, 孟德骄, 姚昕妤. 基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求[J]. 岩土力学, 2020, 41(4): 1203-1210.
[5] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[6] 侯公羽, 荆浩勇, 梁金平, 张广东, 谭金鑫, 张永康, 杨希, . 不同卸荷速率下矩形巷道变形及 声发射特性试验研究[J]. 岩土力学, 2019, 40(9): 3309-3318.
[7] 李新明, 孔令伟, 郭爱国, . 考虑卸荷速率的K0固结膨胀土应力-应变行为[J]. 岩土力学, 2019, 40(4): 1299-1306.
[8] 胡田飞, 刘建坤, 王天亮, 岳祖润, . 粉质黏土变形特性的冻融循环效应及其双屈 服面本构模型[J]. 岩土力学, 2019, 40(3): 987-997.
[9] 谷建晓, 杨钧岩, 王勇, 吕海波, . 基于南水模型的钙质砂应力−应变关系模拟[J]. 岩土力学, 2019, 40(12): 4597-4606.
[10] 崔凯, 冯飞, 谌文武, 汪小海, 程富强, . 生石灰为掺料的土遗址裂隙注浆浆液结石体 力学兼容性研究[J]. 岩土力学, 2019, 40(12): 4627-4636.
[11] 李新明, 孔令伟, 郭爱国, . 卸荷损伤原状膨胀土剪切力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4685-4692.
[12] 吉恩跃, 陈生水, 傅中志, . 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4777-4782.
[13] 李新明, 孔令伟, 郭爱国, . 原状膨胀土剪切力学特性的卸荷速率 效应试验研究[J]. 岩土力学, 2019, 40(10): 3758-3766.
[14] 欧孝夺,潘 鑫,侯凯文,江 杰,柳子炎,. 广西北部湾人造陆域吹填土电冲击特性研究[J]. , 2018, 39(S1): 348-354.
[15] 董西好,杨更社,田俊峰,荣腾龙,贾海梁,刘 慧,. 侧向卸荷条件下冻结砂岩变形特性[J]. , 2018, 39(7): 2518-2526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[2] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[3] 马 亢,徐 进,吴赛钢,张爱辉. 公路隧道局部塌方洞段的围岩稳定性评价[J]. , 2009, 30(10): 2955 -2960 .
[4] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[5] 朱泽奇,盛 谦,梅松华,张占荣. 改进的遍布节理模型及其在层状岩体地下工程中的应用[J]. , 2009, 30(10): 3115 -3121 .
[6] 徐远杰,潘家军,刘祖德. 混凝土面板堆石坝的一种坝坡修整算法[J]. , 2009, 30(10): 3139 -3144 .
[7] 李少龙,张家发,张 伟,肖 利. 表层土渗透系数空间变异与随机模拟研究[J]. , 2009, 30(10): 3168 -3172 .
[8] 王 刚,蒋宇静,王渭明,李廷春. 新型数控岩石节理剪切渗流试验台的设计与应用[J]. , 2009, 30(10): 3200 -3209 .
[9] 孙文静,孙德安,孟德林. 饱和膨润土及其与砂混合物的压缩变形特性[J]. , 2009, 30(11): 3249 -3255 .
[10] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .