岩土力学 ›› 2020, Vol. 41 ›› Issue (4): 1203-1210.doi: 10.16285/j.rsm.2019.0740

• 基础理论与实验研究 • 上一篇    下一篇

基于温度效应下二灰固化石油污染滨海盐渍土 力学特性优化固化需求

李敏1, 2,孟德骄3,姚昕妤1   

  1. 1. 河北工业大学 土木工程学院,天津 300401;2. 河北工业大学 河北省土木工程技术研究中心,天津 300401; 3. 天津辰创环境工程科技有限责任公司,天津 300400
  • 收稿日期:2019-04-24 修回日期:2019-06-26 出版日期:2020-04-11 发布日期:2020-07-01
  • 作者简介:李敏,女,1985年生,博士,副教授,主要从事污染土方面的处置研究。
  • 基金资助:
    国家自然科学基金(No. 51978235);河北省自然科学基金(No. E2018202274);天津市自然科学基金(No. 17JCZDJC39200)。

Optimization of requirement for two kinds of ash solidified materials used in oil contaminated saline soil considering temperature sensitivity

LI Min1, 2,MENG De-jiao3,YAO Xin-yu1   

  1. 1. School of Civil Engineering, Hebei University of Technology, Tianjin 300401, China; 2. Hebei Research Center of Civil Engineering Technology, Hebei University of Technology, Tianjin 300401, China; 3. Tianjin Chenchuang Environment Engineering Science & Technology Co., Ltd., Tianjin 300400, China
  • Received:2019-04-24 Revised:2019-06-26 Online:2020-04-11 Published:2020-07-01
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51978235), the Natural Science Foundation of Hebei Province (E2018202274) and the Natural Science Foundation of Tianjin (17JCZDJC39200).

摘要: 温度是影响石油污染土性能的重要因素。依托滨海地区特有气候环境特点,借助抗压强度指标及应力?应变分布,从抗温敏性角度,优化石油污染滨海盐渍土对二灰的固化需求。研究结果表明:(1)在?20~40 ℃温度变化范围内,石油污染土抗压强度波动幅度高达1倍,采用二灰进行固化处理后,抗压强度波动缩小至10%~20%。二灰固化作用可将热敏性物质(石油、水、盐)吸附、包裹于胶体内外,增强对环境温度变化的抵抗性。(2)石油污染土及固化石油污染土的无侧限抗压强度均随温度变化呈先减小后增大趋势,10 ℃为强度转折点,也即最低点,实际工程中应加以重视。(3)温度作用下,固化石油污染土呈应变软化型破坏,且随温度及污染水平的增大,塑性变形阶段延长,轴向应变增大,出现四周型层状破坏。(4)土体自身的污染程度影响固化效果,高污染条件下抗压强度波动幅度约为40%,实际工程中应依据土体自身的污染程度调整固化配比。低污染土的固化配比选取只需略高于未污染土,过高固化配比并不利于增强稳定性,同比率石灰掺量的改变较粉煤灰的更有助于增强稳定性。污染水平≤6%的石油污染盐渍土,可选固化配比为石灰10%+粉煤灰20%。

关键词: 温敏性, 固化石油污染土, 无侧限抗压强度, 应力?应变曲线

Abstract: Temperature is an important factor that affects properties of oil contaminated soil. This study considered the special characteristics of the climate environment in the coastal area and used unconfined compressive strength and stress-strain distribution to optimize the requirement for two kinds of ash solidified materials, and the temperature sensitivity was used as an evaluation criterion. Results indicate that the compressive strength of the oil contaminated soil significantly fluctuates, and it is up to two times in the temperature range of -20?40 °C. However, the fluctuation reduces to 10%?20% after soil solidification with two kinds of ash. Solidified materials can adsorb and enclose the temperature sensitive substances (oil, water and salt) in the gel body and even outside, and then it can enhance the resistance to the variation of environmental temperature. The unconfined compressive strengths of oil contaminated soil and solidified soil decrease first and then increase with the increasing of temperature, and 10 °C is the turning point, which is the lowest point. The results suggest that this temperature should be of particular concern in practical engineering. Under the action of temperature, the failure mode of solidified oil contaminated soil is strain-softening. With the increase of temperature and the contaminated level, the plastic deformation stage is prolonged, and the axial strain gradually increases. Finally, the surrounding layered damage occurs. The contaminated level of soil itself affects the solidified effect, and the fluctuation of compressive strength under a high level of contamination is about 40%. Therefore, in actual engineering, the solidified requirement should be adjusted according to the contaminated level. As to the soil with low contamination, the solidified requirement is only slightly higher than that of the uncontaminated soil, and too much solidification for the soil with low contamination is often counterproductive. Lime has more contribution than fly ash to soil stability under the same additive to soil ratio. As to the oil-contaminated saline soil with 6% contamination, the optional solidified condition is 10% lime +20% fly ash.

Key words: temperature sensitivity, solidified oil contaminated soil, unconfined compressive strength, stress-strain curve

中图分类号: 

  • TU 43
[1] 吴俊, 征西遥, 杨爱武, 李延波. 矿渣−粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.
[2] 刘海峰, 郑坤, 朱长歧, 孟庆山, 吴文娟. 基于应力−应变曲线的礁灰岩脆性特征评价[J]. 岩土力学, 2021, 42(3): 673-680.
[3] 黄涛, 方祥位, 张伟, 申春妮, 雷宇龙, . 活性氧化镁−微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306.
[4] 高运昌, 高盟, 尹诗, . 聚氨酯固化海砂的静力特性试验研究[J]. 岩土力学, 2019, 40(S1): 231-236.
[5] 沈泰宇, 汪时机, 薛乐, 李贤, 何丙辉, . 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8): 3115-3124.
[6] 查甫生, 刘晶晶, 许龙, 邓永锋, 杨成斌, 储诚富, . 水泥−粉煤灰固化/稳定重金属污染土的电阻率 特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580.
[7] 吕擎峰, 周 刚, 王生新, 霍振升, 马 博, . 固化盐渍土核磁共振微观特征[J]. 岩土力学, 2019, 40(1): 245-249.
[8] 陈瑞锋,田高源,米栋云,董晓强,. 赤泥改性黄土的基本工程性质研究[J]. , 2018, 39(S1): 89-97.
[9] 张亭亭,王 平,李江山,万 勇,薛 强,王士权, . 养护龄期和铅含量对磷酸镁水泥固化/稳定化铅污染土的固稳性能影响规律及微观机制[J]. , 2018, 39(6): 2115-2123.
[10] 章定文,项 莲,曹智国, . CaO对钙矾石固化/稳定化重金属铅污染土的影响[J]. , 2018, 39(1): 29-35.
[11] 刘晋铭,欧忠文,肖寒冰,莫金川,杨康辉. 功能组分对固化土早期强度的影响研究[J]. , 2017, 38(3): 755-761.
[12] 邓友生,吴 鹏,赵明华,段邦政,. 基于最优含水率的聚丙烯纤维增强膨胀土强度研究[J]. , 2017, 38(2): 349-353.
[13] 孙潇昊,缪林昌,童天志,王呈呈, . 微生物沉积碳酸钙固化砂土试验研究[J]. , 2017, 38(11): 3225-3230.
[14] 张亭亭,李江山,王 平,黄 茜,薛 强. 磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制[J]. , 2016, 37(S2): 279-286.
[15] 崔明娟,郑俊杰,赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. , 2016, 37(S2): 397-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[6] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[7] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[8] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[9] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .
[10] 倪骁慧,朱珍德,赵 杰,李道伟,冯夏庭. 岩石破裂全程数字化细观损伤力学试验研究[J]. , 2009, 30(11): 3283 -3290 .