岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3440-3450.doi: 10.16285/j.rsm.2021.0184

• 数值分析 • 上一篇    下一篇

基于两种数值模拟方法的围岩脆性破坏 特征对比分析

马冰1,王学滨1, 2,田锋1   

  1. 1. 辽宁工程技术大学 力学与工程学院,辽宁 阜新 123000;2. 辽宁工程技术大学 计算力学研究所,辽宁 阜新 123000
  • 收稿日期:2021-02-02 修回日期:2021-06-20 出版日期:2021-12-13 发布日期:2021-12-14
  • 通讯作者: 王学滨,男,1975年生,博士,教授,博士生导师,主要从事工程材料及结构的变形、破坏及稳定性方面的研究。E-mail: wxbbb@263.net E-mail: bingandna@163.com
  • 作者简介:马冰,男,1988年生,博士研究生,主要从事围岩变形开裂方面的研究
  • 基金资助:
    国家自然科学基金(No.51874162)。

Comparative analysis of brittle failure characteristics of surrounding rock based on two numerical simulation methods

MA Bing1, WANG Xue-bin1, 2, TIAN Feng1   

  1. 1. College of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; 2. Institute of Computational Mechanics, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • Received:2021-02-02 Revised:2021-06-20 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51874162).

摘要: 围岩脆性破坏是一种常见的破坏形式。不同数值方法模拟的结果往往不同。因此,有必要研究不同方法对于模拟围岩脆性破坏特征的适用性。首先,在连续方法中,推导了改进应力跌落模型中残余应力的计算公式,解除了传统应力跌落模型中强度参数变化量的关联性,并通过模拟单轴压缩试验进行了验证。然后,采用连续方法(方法1)及连续?非连续方法(方法2)模拟了静水压力条件下圆形隧道围岩脆性破坏特征。最后,以太平驿隧道为工程背景,采用两种方法模拟了非静水压力条件下围岩的脆性破坏特征。研究发现,在静水压力条件下,采用两种方法均可获得与现场观测或室内试验类似的结果,但采用方法1获得的破坏区范围更大。在非静水压力条件下,虽然方法1的结果与太平驿隧道围岩脆性破坏的现场观测结果有相似之处,但方法2的结果与现场观测结果更为接近。上述结果可能是由于在方法1中,围岩破坏后仍为连续介质,有利于岩块之间的应力传递,从而利于破坏区的发展;在方法2中,围岩开裂后转变为非连续介质,接触力和摩擦力反映了岩块之间的相互作用,消耗了系统能量,从而限制了开裂区的发展。

关键词: 脆性破坏, 应力跌落, 连续方法, 连续?非连续方法, 接触力, 摩擦力

Abstract: Brittle failure is usually observed during excavation of surrounding rock, while the simulation results of brittle failure often vary with numerical methods. Therefore, it is highly important to study the applicability of different numerical methods to simulate brittle failure characteristics of surrounding rock. Firstly, in the continuous method, the calculation formula of residual stress in the improved stress drop model is deduced, which removes the correlation of the change of strength parameters in the traditional stress drop model, and is verified by simulated uniaxial compression test. Then, the continuum method (method 1) and the continuum-discontinuum method (method 2) were used to simulate brittle failure characteristics of circular tunnel surrounding rock under hydrostatic pressure. Finally, taking Taipingyi tunnel as an application example, two methods were used to simulate brittle failure characteristics of circular tunnel surrounding rock under non-hydrostatic pressure. It is found that under hydrostatic pressure, the results obtained by both methods are similar to those obtained by the field observation or laboratory experiments, while the failure zones obtained by method 1 is larger. Under non-hydrostatic pressure, although the result obtained by method 1 is similar to that obtained by field observation of surrounding rock failure of the Taipingyi tunnel, the results obtained by method 2 are closer to that by the field observation. This phenomenon could be explained as follows. In method 1, the surrounding rock is still a continuous after failure, which is conducive to stress transfer between rock blocks, thus facilitating the development of failure zones; while in method 2, the surrounding rock is converted into a discontinuum after cracking, and the contact and friction forces reflect the interaction between rock blocks and consume the system energy, thus limiting the development of cracking zones.

Key words: brittle failure, stress drop, continuum method, continuum-discontinuum method, contact force, friction force

中图分类号: 

  • TU451
[1] 陈世杰, 肖明, 王小威, 陈俊涛, . 陡倾角断层下地下洞室地震破坏特性数值分析[J]. 岩土力学, 2021, 42(9): 2600-2610.
[2] 周超彪, 刘东, 姜清辉, . 拉剪作用下类岩石试样的力学 特性与损伤破坏机制[J]. 岩土力学, 2021, 42(12): 3335-3344.
[3] 舒芹, 王学滨, 赵扬锋, 白雪元, . 应力球量不变应力跌落方式下非均质岩样 破坏过程数值模拟[J]. 岩土力学, 2020, 41(10): 3465-3472.
[4] 张超, 杨期君, 曹文贵. 考虑峰值后区应力跌落速率的 脆岩损伤本构模型研究[J]. 岩土力学, 2019, 40(8): 3099-3106.
[5] 杨石扣, 张继勋, 任旭华, . 基于改进数值流形法的接触裂纹问题研究[J]. 岩土力学, 2019, 40(5): 2016-2021.
[6] 顾晓强, 杨朔成, . 基于离散元数值方法的砂土小应变弹性特性探讨[J]. 岩土力学, 2019, 40(2): 785-791.
[7] 张业勤, 陈保国, 孟庆达, 徐昕, . 减载条件下高填方涵洞受力机制及基底压力[J]. 岩土力学, 2019, 40(12): 4813-4818.
[8] 申海萌, 李 琦, 李霞颖, 马建力, . 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学, 2018, 39(S2): 254-262.
[9] 朱俊高,陆阳洋,蒋明杰,褚福永,. 新型静止侧压力系数试验仪的研制与应用[J]. , 2018, 39(8): 3071-3076.
[10] 刘勋楠,赵兰浩,毛 佳,许 栋,. 三维距离势离散单元法[J]. , 2018, 39(7): 2639-2650.
[11] 张希巍,王 刚,蔡 明,徐 荃,. 凌海花岗岩变形特点与脆性评价[J]. , 2018, 39(10): 3515-3524.
[12] 周葆春,孔令伟,马全国,罗正涛,张彦钧,. 压实膨胀土非饱和抗剪强度的湿度与密度效应[J]. , 2017, 38(S1): 240-246.
[13] 郭 翔,王学滨,白雪元,王春伟,齐大雷,. 加载方式及抗拉强度对巴西圆盘试验影响的连续-非连续方法数值模拟[J]. , 2017, 38(1): 214-220.
[14] 周 辉,卢景景,徐荣超,张传庆,陈 王君,孟凡震. 硬脆性大理岩拉剪破坏特征与屈服准则研究[J]. , 2016, 37(2): 305-314.
[15] 王金梅 ,张迎宾,赵兴权 , . 微型抗滑桩单桩设计计算模型及算法研究[J]. , 2015, 36(8): 2395-2401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .