岩土力学 ›› 2023, Vol. 44 ›› Issue (9): 2628-2638.doi: 10.16285/j.rsm.2022.1600

• 基础理论与实验研究 • 上一篇    下一篇

浑水渗流对黏性土内贯穿性裂缝修复演化研究

何涛1, 2,毛海涛1, 2,张超2,谷易2   

  1. 1. 山西农业大学 城乡建设学院,山西 晋中 030600;2. 重庆三峡学院 土木工程学院,重庆 404120
  • 收稿日期:2022-10-14 接受日期:2022-12-14 出版日期:2023-09-11 发布日期:2023-09-02
  • 通讯作者: 毛海涛,男,1980年生,博士,教授,主要从事水利工程渗流相关问题的研究。E-mail: maohaitao1234@163.com E-mail:hetao5939@163.com
  • 作者简介:何涛,男,1997年生,硕士研究生,主要从事岩土工程渗流相关问题研究。
  • 基金资助:
    国家自然科学青年基金(No.42207102);山西省自然科学基金面上项目(No.202103021224151,No.202103021223132);山西农业大学省改革高层次人才引进项目(No.2021XG009)。

Evolution of perforated cracks in cohesive soil under muddy water seepage

HE Tao1, 2, MAO Hai-tao1, 2, ZHANG Chao2, GU Yi2   

  1. 1. College of Urban and Rural Construction, Shanxi Agricultural University, Jinzhong, Shanxi 030600, China; 2. School of Civil Engineering, Chongqing Three Gorges University, Chongqing 404120, China
  • Received:2022-10-14 Accepted:2022-12-14 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work was supported by the National Natural Science Youth Foundation of China (42207102), the Shanxi Province Natural Science Foundation Project (202103021224151, 202103021223132) and the Provincial Reform High-level Talent Introduction Project of Shanxi Agricultural University (2021XG009).

摘要: 以黏性土为主要物源的大坝防渗体,常会因为极端温差、不均匀沉降等原因出现贯穿性裂缝进而诱发渗流破坏,水力充填和淤堵是一种经济有效的修复方法。为深入研究其修复机制,以重塑黏性土为研究对象,在土体内预制裂缝以模拟防渗体开裂,系统研究了浑水浓度、水头、渗流方向(即水平、竖直、斜向)、反滤层不均匀系数等因素对裂缝修复的影响,对裂缝修复时缝内流体的运动状态进行了判定,并基于数字图像处理技术开展了裂缝在浑水渗流作用下的演化规律研究。结果表明:在浑水渗流作用下,黏性土内裂缝修复过程可分为3个阶段,分别是过渡期(阶段1)、修复期(阶段2)和稳定期(阶段3);裂缝修复过程会影响裂缝中流体的渗流特性,阶段1、阶段2内的流体运动规律满足Forchheimer流动,阶段3内的流体运动规律符合Darcy流,且阶段3的起点为流态转捩的临界点,可根据裂缝内流态的变化判断裂缝修复所处阶段;浑水浓度、水头、裂缝形式、反滤层不均匀系数为裂缝修复的主要影响因素,在高浓度、低水头下裂缝修复所需时间最短;裂缝修复后的渗出量Q、流速ν 相比修复前均显著降低,分别降低99.83%、99.98%,而水力梯度J明显增加,增长幅度为27.92倍,修复后的土体抗渗性能明显增强。研究成果对于大坝防渗体裂缝的演化机制与防治措施具有一定的理论指导价值。

关键词: 浑水, 贯穿性裂缝, 水力充填, 数字图像处理, 抗渗性能

Abstract: The dam anti-seepage body with cohesive soil as the main source often has perforated cracks due to extreme temperature difference, uneven settlement and other reasons, which eventually induces seepage failure. Hydraulic filling and clogging is an economical and effective repair method. In order to understand its repair mechanism, this paper takes the remolded cohesive soil as the research object, prefabricates cracks in the soil to simulate the cracking of the impermeable body, and studies the effects of muddy water concentration, water head, seepage direction (i.e. horizontal, vertical, oblique), non-uniformity coefficient of the filter layer and other factors on crack repair. The motion state of the fluid in the crack during crack repair was determined, and the evolution law of the crack under the action of muddy water seepage was studied based on digital image processing technology. The results show that under the action of muddy water seepage, the crack repair process in cohesive soil can be divided into three stages: transition period (stage 1), repair period (stage 2) and stable period (stage 3). The crack repair process will affect the seepage characteristics of the fluid in the crack. The fluid motion law at stages 1 and 2 satisfies the Forchheimer flow, and the fluid motion law at stage 3 conforms to the Darcy flow. The starting point of stage 3 is the critical point of flow transition, and the stage of fracture repair can be judged according to the change of flow state in the crack. Muddy water concentration, water head, crack type and uneven coefficient of filter layer are the main influencing factors of crack repair. The time required for crack repair is the shortest under high muddy water concentration and low water head. The seepage quantity Q and flow velocity ν after the crack repair are significantly lower than those before the repair, which are reduced by 99.83% and 99.98%, respectively, while the hydraulic gradient J is significantly increased by 27.92 times, and the impermeability performance of the soil after the repair is significantly enhanced. The research has certain theoretical guidance value for the evolution mechanism and prevention measures of the cracks in the dam anti-seepage body.

Key words: muddy water, perforated cracks, hydraulic filling, digital image processing, impermeability performance

中图分类号: 

  • TU411
[1] 贺桂成, 谢元辉, 李咏梅, 李春光, 唐孟媛, 张志军, 伍玲玲. 微生物胶结砂岩型铀矿砂的抗渗性能试验研究[J]. 岩土力学, 2022, 43(9): 2504-2514.
[2] 熊雨, 邓华锋, 李建林, 程雷, 朱文羲. 火山灰增强微生物固化砂土效果的试验研究[J]. 岩土力学, 2022, 43(12): 3403-3415.
[3] 王盛年, 高新群, 吴志坚, 惠洪雷, 张兴瑾, . 水泥偏高岭土复合稳定粉砂土渗透特性试验研究[J]. 岩土力学, 2022, 43(11): 3003-3014.
[4] 大久保诚介, 汤 杨, 许江, 彭守建, 陈灿灿, 严召松, . 3D-DIC系统在岩石力学试验中的应用[J]. 岩土力学, 2019, 40(8): 3263-3273.
[5] 郎颖娴, 梁正召, 段 东, 曹志林, . 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212.
[6] 王东伟, 陆武萍, 唐朝生, 赵红崴, 李胜杰, 林銮, 冷挺, . 砂土微观结构样品制备技术及量化方法研究[J]. 岩土力学, 2019, 40(12): 4783-4792.
[7] 黄 伟,项 伟,王菁莪,程超杰,崔德山,刘清秉,. 基于变形数字图像处理的土体拉伸试验装置的研发与应用[J]. , 2018, 39(9): 3486-3494.
[8] 王培涛,任奋华,谭文辉,闫振雄,蔡美峰,杨天鸿,. 单轴压缩试验下粗糙离散节理网络模型建立及力学特性[J]. , 2017, 38(S1): 70-78.
[9] 尹延春 ,赵同彬,谭云亮 ,于凤海 , . 基于Otsu图像处理的岩石细观模型重构及数值试验[J]. , 2015, 36(9): 2532-2540.
[10] 陈世江 ,朱万成 ,于庆磊 ,王青元,. 基于多重分形特征的岩体结构面剪切强度研究[J]. , 2015, 36(3): 703-710.
[11] 黎 伟,刘观仕,姚 婷. 膨胀土裂隙图像处理及特征提取方法的改进[J]. , 2014, 35(12): 3619-3626.
[12] 冯宝成 曹金凤 高洪秀 岳 军 . 基于变分水平集方法获取岩石的细观结构[J]. , 2012, 33(12): 3592-3597.
[13] 刘清秉,项 伟,M. Budhu ,崔德山. 砂土颗粒形状量化及其对力学指标的影响分析[J]. , 2011, 32(S1): 190-197.
[14] 许尚杰 ,党发宁 ,程素珍. 浑水渗流理论及平原水库防渗技术研究[J]. , 2011, 32(7): 2093-2098.
[15] 吴 文. 添加絮凝药剂的尾矿砂浆充填材料的单轴抗压强度试验研究[J]. , 2010, 31(11): 3367-3372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .