›› 2015, Vol. 36 ›› Issue (3): 755-761.doi: 10.16285/j.rsm.2015.03.020

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Deformation characteristics of weakly expansive soil and its prediction

GAO You1, SUN De-an1, LÜ Hai-bo2   

  1. 1. Department of Civil Engineering, Shanghai University, Shanghai 200072, China; 2. Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
  • Received:2013-11-15 Online:2015-03-11 Published:2018-06-13

Abstract: A series of wetting tests on a weakly expansive soil, taken from Huaian, Jiangsu province, was performed to investigate the swelling and compression deformations. The influences of initial water content and initial dry density were studied under the applied vertical pressures from 25 kPa to 800 kPa. It is shown that the swelling deformation due to wetting is mainly affected by the initial dry density, and little affected by the initial water content. At the same initial water content, the swelling deformation increases with the initial dry density increasing. At the same initial dry density, the swelling deformation decreases little with the initial water content increasing. According to the points of intersection of the compression lines on unsaturated state and the saturated state lines with different initial densities, a state line is obtained. The state line is almost not affected by the initial water content. And it can judge whether the expansive soil will swell or compress due to wetting under different void ratios and vertical pressures. Finally, based on the results of wetting tests, a simple method for predicting the swelling deformation of expansive soils due to wetting is proposed.

Key words: expansive soil, swelling deformation, compression deformation, wetting, prediction of swelling deformation

CLC Number: 

  • TU 443
[1] JIE Yu-xin, ZHANG Yan-yi, YANG Guang-hua, . Calculation method of wet deformation of earth-rock materials [J]. Rock and Soil Mechanics, 2019, 40(S1): 11-20.
[2] XIE Hui-hui, XU Zhen-hao, LIU Qing-bing, HU Gui-yang, . Evolution of peak strength and residual strength of weak expansive soil under drying-wetting cycle paths [J]. Rock and Soil Mechanics, 2019, 40(S1): 245-252.
[3] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[4] LIU Zu-qiang, LUO Hong-ming, ZHENG Min, SHI Yun-jiang, . Study on expansion-shrinkage characteristics and deformation model for expansive soils in canal slope of South-to-North Water Diversion Project [J]. Rock and Soil Mechanics, 2019, 40(S1): 409-414.
[5] LI Jing-jing, KONG Ling-wei, . Creep properties of expansive soil under unloading stress and its nonlinear constitutive model [J]. Rock and Soil Mechanics, 2019, 40(9): 3465-3475.
[6] CHEN Yong-qing, WEN Chang-ping, FANG Xuan-qiang, . Modified Yin’s double-yield-surface model for bioenzyme-treated expansive soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3515-3523.
[7] CHEN Yong, SU Jian, TAN Yun-zhi, CHAN Dave, . Water retention capacities of soils under the coupling actions of cyclic drying-wetting and repeated loading-unloading [J]. Rock and Soil Mechanics, 2019, 40(8): 2907-2913.
[8] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of ageing effect on mechanical properties of Nanyang undisturbed expansive soil [J]. Rock and Soil Mechanics, 2019, 40(8): 2947-2955.
[9] DING Yan-hui, ZHANG Bing-yin, QIAN Xiao-xiang, YIN Yin, SUN Xun, . Experimental study of the characteristics of wetting deformation of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2975-2981.
[10] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[11] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[12] XIE Kai-nan, JIANG De-yi, SUN Zhong-guang, SONG Zhong-qiang, WANG Jing-yi, YANG Tao, JIANG Xiang, . Influence of drying-wetting cycles on microstructure degradation of argillaceous sandstone using low field nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2019, 40(2): 653-659.
[13] ZHOU Hui, SONG Ming, ZHANG Chuan-qing, LU Jing-jing, LIU Zhen-jiang, SHI Lin-ken, . Effect of confining pressure on mechanical properties of horizontal layered composite rock [J]. Rock and Soil Mechanics, 2019, 40(2): 465-473.
[14] CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, ZHANG Chen. Influences of freeze-thaw process on evolution characteristics of fissures in expensive soils [J]. Rock and Soil Mechanics, 2019, 40(12): 4555-4563.
[15] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study on shear mechanical properties of unloading damaged undisturbed expansive soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4685-4692.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[5] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[6] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[7] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[8] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[9] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[10] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .