›› 2015, Vol. 36 ›› Issue (4): 1057-1062.doi: 10.16285/j.rsm.2015.04.021

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental determination of the thermal conductivity coefficients of municipal solid wastes in South China

HE Chun-mu1,QIU Zhan-hong1,CHEN He-long2,XIONG Hao1,ZHU Bing-jian1,LIU Zi-zhen1   

  1. 1. College of Architecture and Civil Engineering, Taizhou University, Taizhou, Zhejiang 318000, China; 2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2014-07-22 Online:2015-04-11 Published:2018-06-13

Abstract: The temperature field can significantly influence the performance of the liner system, the gas migration process and the mechanical behavior of the municipal solid waste (MSW) in a landfill. The thermal conductivity coefficient is the important parameter for determining the temperature field in the landfill site. Using DRCD - 3030 type intelligent thermal conductivity tester, the thermal conductivity coefficients of the MSW sampled from Taizhou Luaoli landfill are determined at different water contents and porosities. In the experiment, the water contents of the samples are targeted to 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50%, respectively, and the porosities are targeted to 77.8%, 75.0%, 71.4% and 66.7%, respectively. The experimental results show that the thermal conductivity coefficient of the dry MSW is generally small, about 2.5-3.5 times that of the air in standard state, and it decreases as the porosity increase. The thermal conductivity coefficient of the unsaturated MSW increases with the increase of water content. At the same water content, the smaller the porosity of MSW, the greater thermal conductivity coefficient. Based on the experimental data, a formulation is developed, using the weighted geometric mean method and the linear curve-fitting method, to calculate the thermal conductivity coefficient, which can provide an important tool for determining the temperature field in a landfill.

Key words: municipal solid waste (MSW), thermal conductivity coefficient, porosity, water content.

CLC Number: 

  • TU 443
[1] ZHENG Kun, MENG Qing-shan, WANG Ren, WU Wen-juan, . Elastic wave properties of coral reef limestone with different structural types [J]. Rock and Soil Mechanics, 2019, 40(8): 3081-3089.
[2] ZHANG Wen-jie, YANG Jin-kang. Dye tracer test on preferential flow pattern in landfilled waste [J]. Rock and Soil Mechanics, 2019, 40(5): 1847-1853.
[3] GAO Feng, XIONG Xin, ZHOU Ke-ping, LI Jie-lin, SHI Wen-chao, . Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932.
[4] LIU Gang, ZHAO Ming-zhi, LU Rui, LUO Qiang, LÜ Chao, . Morphology characteristics of gravel particle and its relationship with stacking void ratio [J]. Rock and Soil Mechanics, 2019, 40(12): 4644-4651.
[5] REN Lian-wei, KONG Gang-qiang, HAO Yao-hu, LIU Han-long, . Study of soil comprehensive thermal conductivity coefficient based on field test of energy pile [J]. Rock and Soil Mechanics, 2019, 40(12): 4857-4864.
[6] DONG Zhen, SHEN Rui-chen, XUE Hua-qing, CHEN Yan-peng, CHEN Shan-shan, SUN Fen-jin, ZHANG Fu-dong, LIU Ren-he, PENG Yong, . A new model for predicting low-rank coal dynamic permeability considering slippage effect [J]. Rock and Soil Mechanics, 2019, 40(11): 4270-4278.
[7] ZHANG Tian-jun, SHANG Hong-bo, LI Shu-gang, WEI Wen-wei, BAO Ruo-yu, PAN Hong-yu,. Permeability tests of fractured sandstone with different sizes of fragments under three-dimensional stress states [J]. , 2018, 39(7): 2361-2370.
[8] LIU Jie, HUANG Fei, YANG Yu-nan, YANG Xu. Nondestructive testing of porosity of rock based on capillary infiltration technique [J]. , 2018, 39(3): 1137-1144.
[9] QIU Hao-miao, XIA Tang-dai, ZHENG Qing-qing, ZHOU Fei,. Parametric studies of body waves propagation in saturated frozen soil [J]. , 2018, 39(11): 4053-4062.
[10] HE Ping, WANG Wei-dong, XU Zhong-hua, . Empirical correlations of compression index and swelling index for Shanghai clay [J]. , 2018, 39(10): 3773-3782.
[11] CAO Yuan, NIU Guan-yi, WANG Tie-liang, WANG Ying-jie,. A new method for rock porosity inversion based on in-situ permeability test [J]. , 2017, 38(1): 272-276.
[12] HE Peng-fei, XIA Tang-dai, LIU Zhi-jun, CHEN Wei-yun,. Reflection of P1 wave from free surfaces of double-porosity media [J]. , 2016, 37(6): 1753-1761.
[13] ZHU Wei , XU Hao-qing , WANG Sheng-wei , FAN Xi-hui,. Influence of CaCl2 solution on the permeability of different clay-based cutoff walls [J]. , 2016, 37(5): 1224-1230.
[14] ZHANG Bo-yang, BAI Hai-bo, ZHANG Kai. Experimental research on seepage mutation mechanism of collapse column medium [J]. , 2016, 37(3): 745-752.
[15] XU Chang-jie , XU Liang-ying , YANG Yuan-ye,. Effect of parameters of three-phase unsaturated soils on wave propagation [J]. , 2015, 36(S2): 340-344.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .