›› 2015, Vol. 36 ›› Issue (5): 1328-1332.doi: 10.16285/j.rsm.2015.05.012

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model soil design considering similitude of dynamic constitutive model and evaluation of similarity level

WANG Zhi-jia1, ZHANG Jian-jing1, YAN Kong-ming1, WU Jin-biao1, DENG Xiao-ning2   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. China Nuclear Industry Geotechnical Engineering Co., Ltd., Zhengzhou, Henan 450002, China
  • Received:2014-08-29 Online:2015-05-11 Published:2018-06-13

Abstract: Model soil design, as a vital component of shaking table test of soil-structure interaction, is introduced briefly. After analyzing drawbacks of existing design methods, the similarity indexes of dynamic characteristic between prototype soil and model soil is derived based on backbone curve equation of dynamic stress-strain of soil. Then, a new approach for model soil design is proposed in which treating the similarity of shear modulus ratio and shear stain with reference strain as controlling factors. Several dynamic triaxial tests are carried out to obtain the - and reference strain of model soil, and the data are compared with those of prototype soil. Then a juding system based on the degree of similarity of - between prototype soil and model soil is proposed. The evaluation indexes of juding system mainly include correlation coefficient, nonuniformity coefficient and coefficient of curvature. The research conclusions have great guiding significance on the design of model soil, which are particularly important for shaking table test.

Key words: soil-structure interaction, shaking table test, model soil, scale model design, reference strain, evaluation of similarity level

CLC Number: 

  • TU 317+.1
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[3] WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, TANG Zhao-guang, WANG Hai, DUAN Xue-feng. Reliability analysis of acceleration integral displacement method based on shaking table tests [J]. Rock and Soil Mechanics, 2019, 40(S1): 565-573.
[4] LIU Xin-rong, DENG Zhi-yun, LIU Yong-quan, LIU SHU-lin, LU Yu-ming, . Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads [J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516.
[5] HAN Jun-yan, ZHONG Zi-lan, LI Li-yun, ZHAO Mi, WAN Ning-tan, DU Xiu-li. Nonlinear seismic response of free-field soil under longitudinal non-uniform seismic excitations [J]. Rock and Soil Mechanics, 2019, 40(7): 2581-2592.
[6] HAN Jun-yan, HOU Ben-wei, ZHONG Zi-lan, ZHAO Mi, LI Li-yun, DU Xiu-li. Research on shaking table test scheme of buried pipeline under multi-point non-uniform seismic excitations [J]. Rock and Soil Mechanics, 2019, 40(6): 2127-2139.
[7] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[8] LIU Han-xiang, XU Qiang, ZHU Xing, ZHOU Xiao-peng, LIU Wen-de. Marginal spectrum characteristics of the rock slope with a soft interlayer during an earthquake [J]. Rock and Soil Mechanics, 2019, 40(4): 1387-1396.
[9] ZHUANG Hai-yang, FU Ji-sai, CHEN Su, CHEN Guo-xing, WANG Xue-jian, . Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test [J]. Rock and Soil Mechanics, 2019, 40(4): 1263-1272.
[10] XU Peng, JIANG Guan-lu, QIU Jun-jie, GAO Ze-fei, WANG Zhi-meng, . Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[11] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
[12] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng, . Large-scale shaking table experiment of loess slope supported by frame anchors [J]. Rock and Soil Mechanics, 2019, 40(11): 4240-4248.
[13] YAN Gao-ming, SHEN Yu-sheng, GAO Bo, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Experimental study of stick-slip fault crossing segmental tunnels with joints [J]. Rock and Soil Mechanics, 2019, 40(11): 4450-4458.
[14] XU Cheng-shun, DOU Peng-fei, DU Xiu-li, CHEN Su, HAN Jun-yan, . Large-scale shaking table model test of liquefiable free field [J]. Rock and Soil Mechanics, 2019, 40(10): 3767-3777.
[15] WU Hong-gang, WU Zhi-xin, XIE Xian-long, PAI Li-fang, . Large-scale shaking table test on micro-pile composite structure on soil slope [J]. Rock and Soil Mechanics, 2019, 40(10): 3844-3854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .