›› 2015, Vol. 36 ›› Issue (5): 1463-1470.doi: 10.16285/j.rsm.2015.05.030

• Numerical Analysis • Previous Articles     Next Articles

Deep anti-sliding stability analysis of gravity dam with multiple sliding planes based on distinct element method

YANG Li-fu1, 2, CHANG Xiao-lin1, 2, ZHOU Wei1, 2, CHENG Yong-gang1, 2, MA Gang1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Education Ministry, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2013-12-26 Online:2015-05-11 Published:2018-06-13

Abstract: Although the limit equilibrium method for rigid bodies and the nonlinear finite element method are commonly used to analyze the deep anti-sliding stability of gravity dams, the limit equilibrium method does not capture the feature of progressive failure of gravity dam, and the nonlinear finite element method cannot effectively simulate the behavior of discontinuous rock masses. In addition, a unified failure criterion has yet to be developed for the finite element analysis. Using the calculated boundary stresses based on the discrete block method, a formulation is derived for calculating the factor of safety with regard to the deep anti-sliding stability of gravity dams with multiple sliding planes, and the physical meaning of the dam foundation failure criterion based on the energy mutation of the dam-foundation system is clarified. By comparing the calculated results of the finite element method and the limit equilibrium method, the proposed method and criterion are validated. A case study is performed on the 12th section of Xiangjiaba Gravity Dam, and the results indicate that the instability zone of dam foundation is composed of a yield zone of rock mass foundation and a sliding zone of structural planes. This implies that the proposed method and criterion is capable of addressing the deep anti-sliding stability of gravity dams, and yielding a reasonable factor of safety for dam design.

Key words: distinct element method, gravity dam, multiple sliding surfaces, safety factor, failure criterion, energy mutation

CLC Number: 

  • TU 457
[1] YU Li, LÜ Cheng, DUAN Ru-yu, WANG Ming-nian, . Upper bound limit analysis of three-dimensional collapse mechanism of shallow buried soil tunnel under pore pressure based on nonlinear Mohr-Coulomb criterion [J]. Rock and Soil Mechanics, 2020, 41(1): 194-204.
[2] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[3] YUAN Wei, LIU Shang-ge, NIE Qing-ke, WANG Wei, . An approach for determining the critical thickness of the karst cave roof at the bottom of socketed pile based on punch failure mode [J]. Rock and Soil Mechanics, 2019, 40(7): 2789-2798.
[4] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[5] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[6] WU Shun-chuan, ZHANG Min, ZHANG Shi-huai, JIANG Ri-hua, . Study on determination method of equivalent Mohr-Coulomb strength parameters of a modified Hoek-Brown failure criterion [J]. Rock and Soil Mechanics, 2019, 40(11): 4165-4177.
[7] TIAN Yu, YAO Yang-ping, LU De-chun, DU Xiu-li, . Cross-anisotropic Mohr-Coulomb criterion and formula of passive earth pressure based on modified stress method [J]. Rock and Soil Mechanics, 2019, 40(10): 3945-3950.
[8] YIN Xiao-tao, XUE Hai-bin, TANG Hua, REN Xing-wen, SONG Gang,. Dialectical unity of slope local and global stability analysis methods [J]. , 2018, 39(S1): 98-104.
[9] YIN Xiao-tao, YAN Fei, QIN Yu-qiao, ZHOU Lei, WANG Dong-ying, . Dynamic stability evaluation on Huaping bedding bank slope of Jinshajiang River Bridge in Huali Expressway under seismic action [J]. , 2018, 39(S1): 387-394.
[10] FU Yan, YUAN Wen, LIU Xin-rong, MIAO Lou-li, XIE Wen-bo,. Deterioration rules of strength parameters of sandstone under cyclical wetting and drying in acid-based environment [J]. , 2018, 39(9): 3331-3339.
[11] YANG Shi-kou, REN Xu-hua, ZHANG Ji-xun,. Study on hydraulic fracture of gravity dam using the numerical manifold method [J]. , 2018, 39(8): 3055-3060.
[12] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
[13] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
[14] WEN Shu-jie, LIANG Chao, SONG Liang-liang, LIU Gang,. Search strategy of three-dimensional critical slip surface based on minimum potential energy [J]. , 2018, 39(7): 2708-2714.
[15] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[2] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[3] CHEN Hong-jiang, LI Xi-bing, LIU Ai-hua. Studies of water source determination method of mine water inrush based on Bayes’ multi-group stepwise discriminant analysis theory[J]. , 2009, 30(12): 3655 -3659 .
[4] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[5] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[6] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[7] XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, HUANG Tai-kun, SHAN Xu. Stability analysis of large cylindrical structure for strengthening soft foundation under wave load[J]. , 2010, 31(8): 2648 -2654 .
[8] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[9] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
[10] ZHANG Ding-wen,LIU Song-yu,GU Chen-ying. Elastoplastic analysis of cylindrical cavity expansion with anisotropic initial stress[J]. , 2009, 30(6): 1631 -1634 .