›› 2015, Vol. 36 ›› Issue (10): 2877-2891.doi: 10.16285/j.rsm.2015.10.018

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Strength and leachability of lead contaminated clay stabilized by GGBS-MgO

BO Yu-lin1, 2, YU Bo-wei1, 2, DU Yan-jun1, 2, WEI Ming-li1, 2   

  1. 1. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; 2. Jiangsu Key Laboratory of Urban Underground Engineering & Environmental Safety, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2014-12-31 Online:2015-10-10 Published:2018-06-13

Abstract: This paper investigates the effects of simulated acid rain on the strength and dissolution characteristics of lead contaminated clay, which is stabilized by GGBS-MgO (ground granulated blast furnace slag-magnesium oxide). Semi-dynamic leaching tests are conducted to measure the soil pH value, needle penetration depth, unconfined compressive strength and concentrations of lead, calcium and magnesium in leachate. Thus the effects of the initial pH of leachant, content of GGBS-MgO and lead contamination on the strength characteristics of GGBS-MgO stabilized clay are analyzed, and their effects on the cumulative mass of leached lead, calcium and magnesium and effective diffusion coefficient of lead are further determined. The results demonstrate that the unconfined compressive strength of clay using the semi-dynamic leaching tests is 2%-53% less, compared with the value under standard curing conditions for 39 days. Moreover, the highest impact on the strength of soil is found with an initial pH 2 of the leachant. Under the same content of GGBS-MgO and initial pH of leachant, the strength of the GGBS-MgO stabilized clay is approximately 12%-43% higher than that of the cement solidified clay. When the content of GGBS-MgO is 18%, the strength of clay stabilized by GGBS-MgO is almost 1.3-1.8 times of that of clay stabilized by cement. When the initial pH of leachant is 2, the pH at the specimen subsurface is approximately 50% of that when the pH values of leachant are from 3 to 7. The needle penetration depth decreases with increasing initial pH of leachant, qu and internal pH of clay. Furthermore, the relationship between needle penetration resistance and unconfined compressive strength fits unique power. In addition, the cumulative mass of leached lead, calcium and magnesium decreases with the increase of initial pH of leachant and the content of GGBS-MgO. When initial pH of leachant equals to 2, the cumulative mass of leached lead, calcium and magnesium is approximately 29-222, 1.7-4.4, 12.0-80.3 times of that when initial pH values of leachant are 3, 4, 5 and 7, respectively. Besides, when the content of GGBS-MgO is 12%, the cumulative mass is 1.1-2.0 times of that when the content is 18%. In addition, the effective diffusion coefficient of lead De decreases with the increase of the initial pH of leachant. When pH of leachant is 2, the De is 3-5 orders of magnitude higher than that of the pH values of leachant are 3, 4, 5 and 7. It is found that the De of lead contaminated clay stabilized by GGBS-MgO is lower than that of cement stabilized clay. Particularly, when the pH of leachant is 7, the De of the former one is 1-2 orders of magnitude lower than that of the later one.

Key words: ground granulated blast furnace slag-magnesium oxide (GGBS-MgO), solidification/stabilization, semi-dynamic leaching test, lead contamination, unconfined compressive strength, effective diffusion coefficient

CLC Number: 

  • TU 411,X53
[1] GAO Yun-chang, GAO Meng, YIN Shi, . Experiments on static characteristics of sea sand solidified by polyurethane [J]. Rock and Soil Mechanics, 2019, 40(S1): 231-236.
[2] SHEN Tai-yu, WANG Shi-ji, XUE Le, LI Xian, HE Bing-hui, . An experimental study of sandy clayey purple soil enhanced through microbial-induced calcite precipitation [J]. Rock and Soil Mechanics, 2019, 40(8): 3115-3124.
[3] ZHA Fu-sheng, LIU Jing-jing, XU Long, DENG Yong-feng, YANG Cheng-bin, CHU Cheng-fu, . Electrical resistivity of heavy metal contaminated soils solidified/stabilized with cement-fly ash [J]. Rock and Soil Mechanics, 2019, 40(12): 4573-4580.
[4] YANG Ai-wu, HU Yao, YANG Shao-kun, . New solidification technology and mechanical properties of municipal sludge [J]. Rock and Soil Mechanics, 2019, 40(11): 4439-4449.
[5] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
[6] ZHANG Wen-jie, LOU Xiao-hong, GAO Jia-wen. A dialysis test for fast measurement of diffusion coefficient of high slump backfill [J]. , 2018, 39(2): 523-528.
[7] ZHANG Ding-wen, XIANG Lian, CAO Zhi-guo, . Effect of CaO on ettringite stabilization/solidification of lead-contaminated soil [J]. , 2018, 39(1): 29-35.
[8] LIU Jin-ming, OU Zhong-wen, XIAO Han-bing, MO Jin-chuan, YANG Kang-hui. Early strength of stabilized soil affected by functional components [J]. , 2017, 38(3): 755-761.
[9] DENG You-sheng, WU Peng, ZHAO Ming-hua, DUAN Bang-zheng,. Strength of expansive soil reinforced by polypropylene fiber under optimal water content [J]. , 2017, 38(2): 349-353.
[10] SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WANG Cheng-cheng, . Experimental study of solidifying sand using microbial-induced calcium carbonate precipitation [J]. , 2017, 38(11): 3225-3230.
[11] ZHANG Ting-ting, LI Jiang-shan, WANG Ping, HUANG Qian, XUE Qiang. Experimental study of mechanical and microstructure properties of magnesium phosphate cement treated lead contaminated soils [J]. , 2016, 37(S2): 279-286.
[12] CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang. Experimental study of effect of particle size on strength of bio-cemented sand [J]. , 2016, 37(S2): 397-402.
[13] ZHANG Ting-ting, LI Jiang-shan, WANG Ping, LI Zhen-ze. Experimental study of stress-strain properties of lead-contaminated soils treated by magnesium phosphate cement [J]. , 2016, 37(S1): 215-225.
[14] ZHA Fu-sheng, WANG Lian-bin,LIU Jing-jing, XU Long, CUI Ke-rui. Engineering properties of heavy metal contaminated soil solidified/stabilized with high calcium fly ash [J]. , 2016, 37(S1): 249-254.
[15] XIA Wei-yi , DU Yan-jun , WEI Ming-li , BO Yu-lin , SONG De-jun,. Experimental study of solidification/stabilization of VOCs contaminated slurry [J]. , 2016, 37(5): 1281-1290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .